Cayley graphs and Cayley representations

Ethan Liu

Euler Circle

July 6, 2022

E. Liu [Cayley graphs and Cayley representations](#page-12-0) メロメ メ御 メメ きょくきょう $E = \Omega Q$

Outline

¹ Background: what is a group, Cayley graph, group action

 QQ

ŧ.

K ロ ▶ K 何 ▶ K

Ε

- 2 Simple results: regularity, vertex-transitivity
- ³ Advanced results, Cayley representations
- **4** Further reading

Definition: Group

A group is a set of elements G with a binary operation \cdot satisfying the following properties:

- Closed: $a \cdot b \in G$ for all $a, b \in G$.
- Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in G$.
- Identity $e \in G$ such that $a \cdot e = e \cdot a = a$ for all $a \in G$.
- Inverse element a^{-1} for $a \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

∍

 QQ

Example 1

The set of integers mod 6, \mathbb{Z}_6 , is a group.

Example 2

The empty set is not a group.

Definition: Cayley graph

Let G be a group, and let $S \subseteq G$ be a generating set of G. The Cayley graph $\Gamma(G, S)$ is a simple connected graph with vertex set G and edges $\{g, gs\}$ for all $g \in G$.

Example 3

Symmetric group S_3 , $S = \{132, 312\} \subset S_3$ generates S_3 . The Cayley graph $\Gamma(S_3, S)$ is:

 Ω

Group action

Definition.

A group action by a group G on a set X is a homomorphism from G to the set of permutations of X .

Example 4

The symmetric group of degree 3, S_3 , naturally acts on the ordered triple $(1, 2, 3)$ by permuting its elements. S_3 even acts on the ordered quadruple (1, 2, 3, 4) by permuting the first 3 elements.

Example 5

The group of Rubik's cube moves acts in the usual way on the set of corners of the cube.

Regularity

A graph is said to be regular if each vertex has the same number of neighbors(degree). We can show that all Cayley graphs are regular:

Proof.

Let G be a group and S a generating subset of G . Let s be an element of S. Then, for every $s \in S$ in the Cayley graph $\Gamma(G, S)$,

- $\mathsf{s}^2 \neq e$: Exactly two edges generated by s connecting to any given $g \in \mathsf{G}\colon \{g, g s\}$ and $\{g s^{-1}, g\}$. Proof by contradiction: suppose $\{g, h\}$ is a distinct edge generated by s for some element $h.$ $hs=g$ or $gs=h$, so $h=gs$ or $h=gs^{-1}.$
- $s^2=e$: Exactly one edge generated by s connecting to any given $g \in G$.

 000

Therefore, the degree of every vertex in a Cayley graph is the same, so $\Gamma(G, S)$ is regular.

Graph Automorphism

Definition.

A graph automorphism of a graph $X = (V, E)$ is a permutation $f: V \rightarrow V$ which preserves edges and nonedges:

 $\{u, v\} \in E(X) \iff \{f(u), f(v)\} \in E(X)$

Example: Every permutation of the vertices of the complete graph K_8 is an automorphism.

メロメ メ御 メメ きょくきょう

Ξ

 Ω

E. Liu

Vertex Transitivity

Definition.

A graph is said to be vertex-transitive if there exists an automorphism mapping u to v for any two vertices u, v .

We can prove that all Cayley graphs are vertex-transitive:

Proof.

The permutation $\ell_{g}: G \to G(g \in G)$ which maps $a \mapsto ga$ for all $a \in G$ is an automorphism:

$$
\{ga, gas\} \in E(\Gamma(G, S)) \iff \{a, as\} \in E(\Gamma(G, S))
$$

Then let $u, v \in G$. Then, $\ell_{wu^{-1}}(u) = vu^{-1}u = v$, so there exists an automorphism from any vertex to any other vertex.

イロト イ団 ト イミト イモト

 2990

Sabidussi on automorphism groups

Let $\Gamma(G, S)$ be a Cayley graph. Let ℓ be the group action by G on $\Gamma(G, S)$ mapping $g \mapsto \ell_g$ as defined in the previous slide. Then,

Theorem 6 (Sabidussi '64 [\[1\]](#page-12-1))

A connected graph $\Gamma = (G, E)$ is a Cayley graph of the group G if and only if $\ell G \leq \text{Aut}(\Gamma)$.

This theorem is extremely useful, since it provides an alternative condition for testing whether a given graph is Cayley or not.

E. Liu

Cayley representation problem

The pair (G, S) is called a Cayley representation of a graph Γ if $Γ \cong Γ(G, S).$

Cayley representation problem

Given a Cayley graph Γ, determine all Cayley representations (G, S) .

The problem is an active area of study. Current results include

Theorem 7 (Li '02 [\[2\]](#page-12-2))

A group G has a Cayley graph isomorphic to $K_{m,d}$ (the complete d-partite graph with parts of order m) if and only if G has order md and has a subgroup G_0 of order m, and the generating set is $G \setminus G_0$.

E. Liu

Cayley representation problem

The following graph can be represented as a Cayley graph of $G = \mathbb{Z}_{12}$ and $S = G \setminus \{0, 4, 8\}.$

The parts represe[n](#page-10-0)t $\{0, 4, 8\}$ $\{0, 4, 8\}$ [,](#page-0-0) $\{1, 5, 9\}$ $\{1, 5, 9\}$ $\{1, 5, 9\}$ $\{1, 5, 9\}$, $\{2, 6, 10\}$ $\{2, 6, 10\}$ $\{2, 6, 10\}$, [a](#page-9-0)n[d](#page-11-0) $\{3, 7, 11\}$ $\{3, 7, 11\}$ $\{3, 7, 11\}$ $\{3, 7, 11\}$ $\{3, 7, 11\}$ [.](#page-0-0)

E. Liu

Further reading

Keith Conrad's survey on group actions: [https://kconrad.math.uconn.edu/blurbs/grouptheory/](https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf) [gpaction.pdf](https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf)

Cai-Heng Li's survey on Cayley graphs and representation: [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/S0012365X01004381) [S0012365X01004381](https://www.sciencedirect.com/science/article/pii/S0012365X01004381)

References I

- $[1]$ Gert Sabidussi. Vertex-transitive graphs. Monatshefte für Mathematik, 68(5):426–438, 1964.
- [2] Cai Heng Li. On isomorphisms of finite cayley graphs—a survey. Discrete mathematics, 256(1-2):301–334, 2002.

 $\left\{ \left. \right. \left. \left. \right. \right\} \left. \left. \right. \left. \left. \right\{ \left. \right. \right. \left. \left. \right\} \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left.$

E. Ω