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Abstract

1 Introduction

Cayley graphs, named in honor of mathematician Arthur Cayley, are an
important concept linking group theory and graph theory. Mathematicians
have extensively investigated the isomorphisms of Cayley graphs, seeking to
apply group theory results to specific classes of graphs, and finding Cayley
graph representations continues to be an active area of study in graph theory.

In this paper, we start by summarizing the basics of group theory and
graph theory, as well as group actions, orbits, stabilizers, and group and
graph automorphisms. We then move on to Cayley graphs and their general
properties, after which we describe specific vertex-transitive graphs that can
be represented as Cayley. We conclude by looking into the problem of Cayley
representation, specifically the number and type of Cayley representations
that a given graph can have.

2 Background

Analyzing Cayley graphs calls for basic knowledge of group theory and graph
theory: only then can we fully visualize the concepts involved with Cayley
graphs both through a group theory lens and from a graph theory perspective.
In this section, we will provide relevant definitions and examples for groups,
group actions, isomorphisms, automorphisms, and graphs.
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2.1 Group theory basics

To understand Cayley graphs, we must first familiarize ourselves with some
fundamental definitions from group theory.

Definition 2.1. A group is a set of integers G with a binary operation ·
satisfying the following properties:

• G is closed under ·: a · b ∈ G for all a, b ∈ G.

• · is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ G.

• There exists an identity element e ∈ G such that a · e = e · a = a for
all a ∈ G.

• For all elements a ∈ G, there exists an inverse element a−1 such that
a · a−1 = a−1 · a = e.

Notice that the empty set is not a group, since a group must have an
identity element.

Example 2.1. Consider the set Sn of permutations of the set {1, 2, . . . , n}.
Notice that this set is a group under function composition:

• Sn is closed under ◦: a ◦ b ∈ Sn for all a, b ∈ Sn.

• Function composition is associative: a ◦ (b ◦ c) = (a ◦ b) ◦ c for all
a, b, c ∈ Sn.

• The identity element e = 12 . . . n satisfies a◦e = e◦a = a for all a ∈ Sn.

• For all elements a ∈ Sn, there exists an inverse element a−1, since
permutations are bijective and therefore have inverses which are also
permutations

We call this group the symmetric group: it contains all symmetries of a set
of size n.

It is important to keep in mind that when the symbol ≤ is used in the
context of comparing two groups, for example G ≤ H for two groups G and
H, then it means that G is a subgroup of H.
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2.2 Mappings of groups

We first define group homomorphisms and symmetries, as well as two special
types of homomorphisms called isomorphisms and automorphisms. Then we
define the symmetric group.

Definition 2.2. Let G and H be groups with binary operations · and ∗,
respectively. Then, a group homomorphism is a function f : G → H such
that for any two elements g1, g2 ∈ G,

f(g1 · g2) = f(g1) ∗ f(g2)

In other words, a group homomorphism is a function that respects binary
operations. Consequently, f preserves the identity element:

f(eG) = eH

where eG and eH are the respective identities of G and H, as well as inverses:

f(g−1) = f(g)−1

where g is any element of G.

Definition 2.3. A group isomorphism is a bijective group homomorphism
between the two groups. Due to the one-to-one nature of group isomor-
phisms, if there exists an isomorphism between two groups G and H then
we say G and H are isomorphic: their internal structures are completely
identical.

We use the notation G ∼= H to say that G is isomorphic to H.

Definition 2.4. A group automorphism is an isomorphism from a group G
to itself. An automorphism is often expressed in the form of a permutation
of the elements of G.

Example 2.2. Let GL2(R) be the group of 2x2 invertible real-valued ma-
trices, and let (R,×) be the multiplicative group of nonzero real numbers.
Then, there exists a homomorphism f : GL2(R) → (R,×) that maps every
matrix to its determinant. Notice that for any two matrices A,B ∈ GL2(R),

det(AB) = det(A)× det(B)

Also notice that det(I) = 1, so f preserves identity.
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Example 2.3. For every group G there exists an automorphism mapping
every element to itself: this is known as the trivial automorphism.

Example 2.4. Let G = Z2 be the group of ordered pairs of integers under
componentwise addition. Then, there exists an automorphism f : G → G
that maps (x, y) to (y, x) for all (x, y) ∈ G.

Definition 2.5. Let M be a set. Then, the group of all bijective mappings
from M to itself is known as the symmetric group Sym(M). On the other
hand, the group of all automorphisms of M is known as the automorphism
group Aut(M).

Elements of groups have been shown to correspond with permutations of
another space. For instance, Cayley’s theorem states the following:

Theorem 2.1 (Cayley’s Theorem). Every finite group G can be embedded
into a symmetric group.

Proof. For any element g ∈ G, let ℓg : G → G be the mapping that maps
x ∈ G to gx. Notice that such a mapping is injective: if two elements
a, b ∈ G both mapped to the same element through ℓg, then that would
mean ga = gb = h for some h ∈ G, so a = g−1h = b. Therefore, ℓg is a
bijection from G to itself, so ℓg ∈ Sym(G).

Now we show that the mapping ℓ : G → Sym(G) which maps every g ∈ G
to ℓg ∈ Sym(G) is an isomorphism. Notice that for any two g1, g2 ∈ G,
ϕg1 ◦ ϕg2 = ϕg1g2 . Therefore, ℓ(g1g2) = ℓ(g1) ◦ ℓg2 , so ℓ is a homomorphism.
Now we must show that ℓ is injective: suppose there exist two elements
g1, g2 ∈ G such that ℓ(g1) = ℓ(g2). Then, ℓg1 = ℓg2 , so ℓg1(e) = ℓg2(e), so
g1e = g2e, so g1 = g2.

Therefore, ℓ is an isomorphism, so G can be embedded as a subgroup of
Sym(G).

2.3 Group actions

Since every group can be represented as a subgroup of a symmetric group,
it is natural to draw parallels between certain group elements and certain
permutations of a set. In particular, we can say that a group G acts on a set
X through a particular type of homomorphism from G to Sym(X):
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Definition 2.6. Let G be a group, and let X be a set. Then, a group action
by G on X is a set of permutations πg : X → X for all elements g ∈ G such
that

• The identity of G maps to the identity of Sym(X): If e is the identity
element of G, πe(x) = x for all x ∈ X.

• For all elements g1, g2 ∈ G, πg1 ◦ πg2 = πg1g2 .

Example 2.5. Let G be a group. Then, G acts on itself (G acts on the set
X = G) by left multiplication: For all g, x ∈ G, πg(x) = gx.

It is sometimes said that a group acts on a set in ‘the usual way.’ This
implies that there exists a natural group action between the two, coming from
the group’s construction. For example, the symmetric group Sn is given as
the group of symmetries of a set of size n. The dihedral group Dn is given as
the group of symmetries of a regular n-gon. Such wording is demonstrated
below:

Example 2.6. Let G be the symmetric group Sn, and let X be the set
{1, 2, . . . , n}. Then, G acts on X the usual way, where πg(x) = g(x) for
any g ∈ G, x ∈ X. Notice that every g is inherently a permutation of the
elements of X.

In practice, we can refer to πg(x) as g · x or gx, bypassing the function
notation. When using this notation, it is important to distinguish between
multiplication of elements of the same group and permutation of X by g,
especially when there are multiple elements present in a product, such as in
g1g2x1x2 = πg1g2(x1) · x2.

Theorem 2.2. Let G be a group acting on a set X. Let g ∈ G and x ∈ X
and y = gx. Then, x = g−1y. Also, if x′ ∈ G such that gx′ = gx, then
x′ = x.

Proof. We first prove the first half concerning x and y. Using y = gx, we
have g−1y = g−1(gx) = (g−1g)x = ex = x.

Now we show that gx′ = gx implies x′ = x. Multiplying both sides
of the first equation by g−1, we have g−1(gx′) = g−1(gx), which leads to
(g−1g)x′ = (g−1g)x, so ex′ = ex, so x′ = x. Notice that this demonstrates
the injectivity of multiplying by g(since g is a permutation of the set X).
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We can alternatively define a group action as a homomorphism from G
to the symmetric group Sym(X).

Theorem 2.3. Let G be a group and X be a set. A group action by G on
X is the same as a homomorphism f : G → Sym(X).

Proof. First we show that we can represent any given group action as a
homomorphism f : G → Sym(X).

To show that the mapping f to be a homomorphism, we must first show
that f respects group operations. In particular, given any two elements
g1, g2 ∈ G, f(g1)◦f(g2) = f(g1g2). This follows directly from the group action
definition: πg1 ◦ πg2 = πg1g2 , and f(g) = πg for all g ∈ G, so f(g1) ◦ f(g2) =
f(g1g2).

Notice that for f to be a homomorphism it must also map the identity
of G to the identity of Sym(X): this also follows from the group action
definition, which states that πe(x) = x for the identity e ∈ G, so πe = f(e)
is the identity of Sym(x). Therefore f is a homomorphism.

Next we show that we can represent any homomorphism f : G → Sym(X)
as a group action.

Let f(g) = πg for all g ∈ G. Then f(g1) ◦ f(g2) = f(g1g2), so πg1 ◦ πg2 =
πg1g2 .

Additionally, for the identity element e ∈ G, f(e) is the identity permu-
tation, so πg(x) = x for all x ∈ X. Therefore G acts on X.

Example 2.7. Let R be the group of real numbers under addition. Then,
R acts on itself by translation: for any two elements p, q ∈ R, the mapping
πp : R → R is defined by πp(q) = p + q. This satisfies πp ◦ πq = πp+q, and
π0(q) = q, so it is a group action.

Example 2.8. Let G be the group of moves of a Rubik’s cube. Then, G acts
on both the set of vertices and the set of edges of a Rubik’s cube, since each
move can be interpreted as a permutation of vertices and a permutation of
edges.

Example 2.9. Let G be the group of possible positions of a Rubik’s cube,
with the identity being the solved cube. Then, each position can be inter-
preted as a permutation of the colors, so G acts on itself.

Notice that because of the formula (gh)−1 = h−1g−1, a left action can be
constructed from a right action by composing with the inverse operation of
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the group. Therefore, sources may occasionally refer to the right multiplica-
tion group action in place of the left multiplication group action for a result
that was previously proven true for the left multiplication group action.

2.4 Orbits and stabilizers

The structure of a group action can be represented in two parts:

Definition 2.7. Let group G act on a set X. The orbit Orbx ⊂ X is the set
of elements x′ ∈ X for which there exists a g such that gx = x′.

Definition 2.8. Let group G act on a set X, and let x ∈ X. The stabilizer
Stabx ⊂ G is the set of elements g ∈ G such that gx = x.

Definition 2.9. Let group G act on a set X. An element x ∈ X is a fixed
point when Stabx = G, or, equivalently, when Orbx = {x}.

Example 2.10. The group of 2x2 matrices of real numbers GL2(R) acts
on R2 by multiplication. In this action, the stabilizer of 0 = (0, 0) ∈ R2 is
GL2(R), since any 2x2 matrix multiplied by 0 is 0. On the other hand, the
orbit of 0 is {0} ∈ GL2(R).

Example 2.11. Notice that the Rubik’s Cube group acts on the set of non-
center face cubelets of the Rubik’s Cube. This action creates two disjoint
orbits: edge pieces and corner pieces.

Example 2.12. Let G be a group. Then, G acts on itself (X = G) by
conjugation, in which gx = gxg−1. In this action x ∈ G is a fixed point if
and only if

gxg−1 = x = xe = xgg−1

for all g ∈ G, so x must commute with every element of G, so the fixed
points of this action make up the center of G. Also notice that every orbit
is a normal subgroup in G.

Definition 2.10. We say a group G acts transitively on a set X if there
exists an element x ∈ X such that Orbx = X.

Definition 2.11. We say a group G acts simply transitively on a set X if it
acts transitively and that for any g ∈ G, x ∈ X, gx = x if and only if g = e.
In other words, Stabx is trivial for all x ∈ X.
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Theorem 2.4 (Fundamental Theorem of Group Actions). Let G be a group
acting on a set X.

• Different orbits of the action are disjoint and form a partition of X.

• For each x ∈ X, Stabx is a subgroup of G and Stabgx = g Stabx g
−1.

• For each x ∈ X, there is a bijection Orbx → G/ Stabx by gx 7→ g Stabx.
More concretely, gx = g′x if and only if g and g′ lie in the same left
coset of Stabx, and different left cosets of Stabx correspond to different
points in Orbx.

From part (a) of the fundamental theorem we can see that a group action
is transitive if and only if it has one orbit. In other words, Orbx = X for
some x ∈ X if and only if Orbx = X for all x ∈ X.

Stemming from part (c) of the fundamental theorem we have the orbit-
stabilizer formula:

Theorem 2.5 (Orbit-Stabilizer Formula). Let G be a group acting on a set
X, and let x ∈ X. Then, the number of cosets of Stabx equals the size of
the orbit Orbx:

|Orbx | = |G : Stabx |

3 Cayley Graphs

3.1 Graph theory basics

Now we familiarize ourselves with basic definitions from graph theory.

Definition 3.1. A graph Γ = (V,E) is a set of vertices and edges, where
each edge e ∈ E is a connection between two not necessarily distinct vertices
v, w ∈ V .

Definition 3.2. An undirected graph is a graph in which none of the edges
are one-way: a directed graph or digraph, on the other hand, is a graph in
which at least one of the edges is one-way.

Example 3.1. The following is an example of an undirected graph:
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Notice that between the two vertices on the left there are 3 edges. When-
ever there are 2 or more edges connecting the same pair of vertices, it is
called a multi-edge or multiple edge.

Also, notice that an edge connects the bottom right vertex to itself. We
call this a loop: an edge in which both endpoints are the same point.

Now, notice that we can navigate from any vertex to any other vertex by
traveling across a sequence of edges.

Definition 3.3. A path is a sequence of edges that connects one vertex of a
graph to another vertex of a graph.

Definition 3.4. If there exists a path between every pair of vertices in a
graph, the graph is connected.

In the last section we explored how groups act on sets. In fact, groups
can also act on graphs, since graphs also have automorphism groups. For
example,

Example 3.2. Consider the cycle graph C8, shown below.

1

2

3

4

5

6

7

8
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Notice that the automorphisms of C8 take the form of rotations and
reflections, described by the dihedral group D8, which is comprised of all
rigid transformations of a regular octagon. Therefore, D8 acts on C8.

3.2 Cayley graph basics

Now we define Cayley color diagrams, Cayley digraphs, and Cayley graphs.

Definition 3.5. Let G be a group, and let S ⊆ G be a generating set of
G. The Cayley color diagram Γc(G,S) is a colored connected digraph with
one vertex corresponding to each element g ∈ G, one color cs corresponding
to each element s ∈ S, and one directed edge (g, gs) of color cs for any
g ∈ G, s ∈ S.

If we take the Cayley color diagram Γc(G,S) and ignore colors, we obtain

the Cayley digraph Γ⃗(G,S).

If we take the Cayley digraph Γ⃗(G,S) and ignore directions, we obtain
the Cayley graph Γ(G,S). A more formal definition is as follows:

Definition 3.6. Let G be a group, and let S ⊆ G be a generating set of G.
The Cayley graph Γ(G,S) is an uncolored, undirected graph with one vertex
corresponding to each element g ∈ G, and one edge (g, h) for any g, h ∈ G
such that gh−1 ∈ S.

Example 3.3. Let G be the additive group of integers modulo 6, and let
S = {1, 2}. Below are, from left to right, the Cayley color diagram Γc(G,S),

the Cayley digraph Γ⃗(G,S), and the Cayley graph Γ(G,S).

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

Example 3.4. Let F2 be the free group of generating set of size 2. In other
words, for two generators x and y, F2 is the group of all products of x, y, x−1,
and y−1, unique up to the group axioms(xx−1 = x−1x = e,yy−1 = y−1y = e).

Then, a beautiful Cayley graph arises from the definition with S = {x, y}
as the generating set. In particular, the Cayley graph Γ(F2, S) is
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Alternatively, under the Poincaré hyperbolic disk model, we can visualize the
same graph as

Example 3.5. In some cases, the same graph can be represented as a Cayley
graph multiple ways using different groups. For instance, consider the sym-
metric group G = S3. Notice that the subset S = {132, 312} ⊂ S3 generates
S3: every non-identity element can be written as a product of 132 and 312.

Now consider the additive group modulo 6 G′ = Z6. Notice that the
subset S ′ = {2, 3} generates Z6
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Now we construct both Cayley color diagrams. Below, from left to right,
are the Cayley color diagrams Γc(G,S) and Γc(G

′, S ′):

123

132

321 213

312 231

0

3

1 5

2 4

Notice that besides the labels on the vertices, the two graphs are identical in
structure. Therefore, the same color diagram can be represented as a Cayley
color diagram in at least two ways. This poses an interesting question which
we will delve into in a later section: given a graph we know to be Cayley,
how many ways can it be represented as a Cayley graph of distinct groups?

Example 3.6. The same group can generate multiple distinct Cayley graphs.
Consider, for example, the additive group G = Z6. The subsets S = {1} and
S ′ = {2, 3} both generate G, but they produce different Cayley graphs.
Below are Γc(G,S) and Γc(G,S ′), respectively:

0

1 2

3

45

0

3

1 5

2 4

The aforementioned is the most commonly used definition in the context
of showing that a given graph can be represented as a Cayley graph. However,
some sources use the term “Cayley graph” to describe Cayley color diagrams
and Cayley digraphs. To complicate things further, in some literature, S does
not necessarily generate G, in which case the Cayley graph is not necessarily
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connected. Some literature also requires S to be closed under inversion for
undirected Cayley graphs. The generating set S is also often assumed to not
contain the identity element e of G.

3.3 General properties

In considering the automorphisms of Cayley graphs, we must first lay out
some general properties of Cayley graphs:

Theorem 3.1. Let G be a group with generating set S. Every Cayley
(di)graph Γ(G,S) is regular.

Proof. Let s be an element of S such that s2 ̸= e. Then, for every vertex
g ∈ G, there exists exactly two edges generated by s which connect to g:
one edge between g and gs, and one edge between gs−1 and g. We show
this by contradiction: suppose there exists a third distinct edge generated
by s connecting g to an element h. Then, hs = g or gs = h, so h = gs or
h = gs−1, so this edge is not distinct.

Now, suppose s ∈ S satisfies s2 = e. Then, gs−1 = gs, so s generates
exactly one edge connected to g for any g ∈ G.

Therefore, the degree of every vertex in a Cayley graph is the same, so
Γ(G,S) is regular.

In a Cayley digraph, the indegree of each vertex is equal to the outdegree,
which is equal to the size of the generating set. Notice that in a Cayley
digraph the edges generated by s2 = e can be treated as undirected edges,
since there exists a directed edge going from g to gs and from gs to g.

Definition 3.7. A graph Γ is vertex-transitive if its automorphism group
Aut(Γ) acts transitively on its set of vertices V(Γ).

Theorem 3.2. Let G be a group with generating set S. Every Cayley
(di)graph Γ(G,S) is vertex-transitive.

Proof. We first show that the left transformation ℓg(g ∈ G) is an isomor-
phism.

Let a, b ∈ G be vertices in Γ⃗(G,S) with an edge from a to b. Then, as = b
for some s ∈ S. Therefore gas = gb, so

ℓg(a)s = ℓg(b)
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so the mapping ℓg preserves edges.

Conversely, let a, b ∈ G be vertices in Γ⃗(G,S) such that there is no edge
from a to b. Therefore, ac = b for some c /∈ S. Therefore, gac = gb for some
c /∈ S, so

ℓg(a)c = ℓg(b)

so the mapping ℓg preserves nonedges. Since ℓg preserves both edges and
nonedges, it is a homomorphism.

Next we show that between any two elements a, b ∈ G there exists an
isomorphism ℓg such that ℓg(a) = b. In particular, consider g = ba−1. Then,

ℓg(a) = ba−1a = be = b

Therefore, there exists an automorphism mapping any given vertex to an-
other given vertex, so Γ⃗(G,S) is vertex-transitive.

In addition, since Aut(Γ⃗(G,S)) ≤ Aut(Γ(G,S)), the undirected Cayley
graph Γ(G,S) is also vertex-transitive.

Notice that all vertex-transitive graphs are regular, since each vertex must
have identical structure for a graph to be vertex-transitive. However, not all
regular connected graphs are vertex-transitive.

Example 3.7. Consider the following graph:

This is the smallest regular, non-vertex-transitive graph. In particular, if
we look at the bottom left vertex and the vertex directly to the right of it, we
see that there is no automorphism mapping one to the other. Therefore, in
the action by the automorphism group on the vertices there exists no orbit
containing both vertices, so there must be at least two orbits, so the graph
is non-vertex-transitive.

Example 3.8. In addition, not all vertex-transitive graphs are Cayley graphs.
The Petersen graph is the smallest vertex-transitive graph which cannot be
represented as a Cayley graph.
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1

2

34

5
1

2

34

5

The proof idea utilizes the fact that there are only two distinct groups of size
10: the dihedral group D5 and the cyclic group Z10. In addition, at least one
element s ∈ S must have order 2 (s2 = 1), since the degree of each vertex
is odd. Then we do casework on the two groups to show that no possible
Cayley graph has a 5-cycle but no 4-cycle like the Petersen graph does.

Lemma 3.3. Let G be a group with generating set S. Let ℓ(G) be the
image of the left multiplication group action by G on itself. Then, ℓG =
Aut(Γc(G,S)) ⊆ Aut(Γ(G,S)).

Proof. Let s = sa11 · · · sann where n is an integer, s1, . . . , sn ∈ S, and ai = ±1.
Then, let ϕ be an automorphism in Aut(Γc(G,S)) such that ϕ(e) = g for
some g ∈ G. Then,

ϕ(es) = ϕ(esa11 · · · sann ) = ϕ(e)sa11 · · · sann = gs

Also notice that every element of G can be written as sa11 · · · sann , so ϕ = ℓg
for all g ∈ G. Therefore every element of Aut(Γc(G,S)) can be represented
as a left translation.

Also, as shown above in the proof of vertex-transitivity, ℓg ∈ Aut(Γc(G,S))
for all g ∈ G. Therefore ℓG = Aut(Γc(G,S)). Aut(Γc(G,S)) ⊆ Aut(Γ(G,S))
is by definition.

Theorem 3.4. A connected graph Γ = (V,E) is Cayley if and only if there
exists a subgroup H ⊆ Aut(Γ) which acts simply transitively on V .

Proof. The only if direction is clear: if Γ is Cayley, there exists a group G
(whose elements are just V ) and generating set S such that Γ = Γ(G,S).
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The image of the left multiplication action ℓG = H ⊆ Aut(Γ) acts simply
transitively on V (or G).

Now we prove the other direction. Let Γ = (V,E) be a connected graph
with H ⊆ Aut(Γ) acting simply transitively on V . In another word, for all
v ∈ V , Stabv are trivial. Therefore, |H| = |V |. Fix a vertex v ∈ V and let S
be the set of all elements h ∈ H such that there exists an edge {v, hv} ∈ E.
This is symmetric since H acts by graph automorphisms, so that {v, hv} ∈ E
if and only if {h−1v, v} ∈ E. We now define the isomorphism between Γ and
Γ(H,S) in the following way: for u ∈ V , there exists a unique h ∈ H such
that hv = u, so map u 7→ h; therefore, edge (u, v) ∈ E is included in Γ(H,S)
by h according to the definition of S.

Equivalently, the result is also stated as follows.

Theorem 3.5 (Sabidussi [1964]). A connected graph Γ = (G,E) is a Cayley
graph of the group G if and only if ℓG ≤ Aut(Γ).

3.4 Vertex-transitive graphs

We know that all Cayley graphs are vertex-transitive. Now, we focus on
figuring out which specific vertex-transitive graphs are Cayley or not.

The Kneser’s graph KGn,k (n ≥ 2, k ≥ 1) has
(
2n+k
n

)
vertices identified

with the set of n-tuples of a (2n + k)-set; two vertices are adjacent if the
corresponding n-tuples are disjoint. Petersen’s graph is KG2,1.

Theorem 3.6 (Kantor [1972],Godsil [1980]).

(a) Kneser’s graph KGn,k (n ≥ 2, k ≥ 1) is a Cayley graph precisely if
n = 2 and 2n + k is a prime power, 2n + k ≡ −1 (mod 4), or n = 3
and 2n+ k ∈ {8, 32}

(b) If n ≥ 4 then, with some exceptions, the only transitive proper sub-
group of Aut(KGn,k) is the one induced by the alternating group A2n+k.
Exceptions occur for n = 5 when 2n + k ∈ 12, 24 and for n = 4 when
2n+ k ∈ {9, 11, 12, 23, 24, 33}.

Theorem 3.7.

(a) (Wielandt [1964]) If G is a transitive group of degree pk, where p is
prime, then the Sylow p-subgroups of G are transitive as well.
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(b) (Marušič [1985]) Every vertex-transitive (di)graph of order pk, where k
is an integer ≤ 3, is a Cayley (di)graph. For k ≥ 4, counterexamples
exist.

4 Cayley Representation Problems

Often, different groups and generating sets can result in identical Cayley
graphs. The pair (G,S) is called a Cayley representation of a graph Γ if
Γ ∼= Γ(G,S).

Given a Cayley graph Γ, there can be multiple different Cayley represen-
tations (G,S). For example, let Γ = Kn, the complete graph of order n. Any
group G of order n and S = G \ {e} results Γ(G,S) ∼= Kn, and the number
of such representations equals the number of non-isomorphic groups of order
n.

The Cayley representation problem is: given a Cayley graph Γ, determine
all Cayley representations (G,S). The above example shows the answer for
complete graphs Kn.

Next, we examine complete d-partite graphsKm;d, where there are d parts
each with size m, a vertex connects to no vertexes in the same part and all
vertexes in other parts.

Theorem 4.1 (Li [2002]). A group G has a Cayley graph isomorphic toKm;d

if and only if G has order md and has a subgroup G0 of order m, and the
generating set is G \G0.

On the other hand, Cn (n ≥ 3), the cycle graph of size n is a 2-regular
graph, the simplest type of regular graph. It follows from the definition of the
dihedral group that the automorphism group Aut(Cn) = Dn is the dihedral
group. Now, notice that Γ(Zn, {a}) ∼= Cn for any a ∈ Zn coprime to n.
Also, note that Zn is a subgroup of Dn with the order n. If n is odd, it is
the only subgroup of order n. If n is even, (Dn

2
, {s, rs}) is also an Cayley

representation for Cn, where r, s generates Dn
2
with r

n
2 = s2 = (rs)2 = e. The

case of D4 is illustrated below, resulting in C8. Note Dn
2
is another subgroup

of Dn of the order n. In fact, the above discussion also applies to C2 even
though it only has one edge, and is thus a 1-regular graph. It follows from
Theorem 3.5 theses are the only Cayley representations for Cn.
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The next example is a generalization of the above and concerns the Carte-
sian product of cycles of the same length.

Definition 4.1. For given graphs Γ1 = (V1, E1) and Γ2 = (V2, E2), the
Cartesian product Γ1 × Γ2 is the graph with the vertex set V1 × V2, where
each element is a pair of elements from Γ1 and Γ2, and the edge set

{{(u1, v2), (v1, v2}|{u1, v1} ∈ E1, v2 ∈ V2}∪{{(u1, u2), (u1, v2}|u1 ∈ E1, {u2, v2} ∈ V2}.

Example 4.1. Consider the cycle graph C4. The Cartesian product of C4

by itself, C4 × C4 = C2
4 , is shown below:
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(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

We have the following results about possible groups G for these Cartesian
products of cycle graphs.

Theorem 4.2 (Li [2002]). Let Γ ∼= Cd
n, the Cartesian product of d copies of

Cn. If n = 3 or n ≥ 5,

• If n is odd, then Γ is a Cayley graph of a group G ∼= Zd
n.

• If n is even, then Γ is a Cayley graph of a group G ∼=
∏d

i=1 Gd, where
Gi

∼= Zn or Dn
2
.

If n = 2, the graph is also known as Qd, the hypercube of dimension d.
In fact, the n = 4 case also boils down to a hypercube Cd

4 = C2d
2 = Q2d. For

d = 2, the 2-dimensional hypercube Q2 is identical to the square C4, which
we have already examined.
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Theorem 4.3 (Li [2002]). Let Γ ∼= Qd, the d dimensional hypercube graph.

• If d = 3, Q3 has these Cayley representations: (Z3
2, {(1, 0, 0), (0, 1, 0), (0, 0, 1)});

(Z4 × Z2, {(i, 0), (0, 1)}), i = 1 or 3; or (D4, {r, s}) where r, s generates
D4 with r4 = s2 = (rs)2 = e.

• For general d, the size of Qd is 2d. For G of order 2d and G ∼=
∏l

i=1 Gl,
where Gi

∼= Z2,Z4 or D4, there exists S ⊂ G, such that Γ(S,G) ∼= Qd.

The complete answer for general Qd is unknown. Dixon [1997] showed
results for small dimensions d = 3, 4, 5, 6, there are 4,14,45 and 238 Cayley
representations, respectively.

There are lots of open questions for the Cayley representation problem.
Known results and open questions are surveyed in Li [2002], on which this
section is based.
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