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Abstract. This paper gives an overview of the Burnside problem, its history, and the mecha-
nisms of notable solutions. We explore three solutions to some of the variations of the Burnside
problem, each completely separate from the other two. Two of these address the general Burn-
side problem, and the third covers a few small cases of the open Burnside problem.

1. Introduction

The Burnside problem is one of the oldest questions asked in group theory. An innocent,
natural question that turned out to have a complex solution. In 1902, William Burnside wrote:
“A still undecided point in the theory of discontinuous groups is whether the order of a group
may not be finite while the order of every operation it contains is finite.” (Burnside, 1902).
This was the birth of the general Burnside problem:

The general Burnside problem. If a group is finitely generated, and each
element is of finite order, is the group necessarily finite?

This was followed by a more specific variation that Burnside thought would be “easier”:

The bounded Burnside problem. If a group G is finitely generated, and
there exists some n such that gn = e for all g ∈ G, must G be finite?

And finally the open problem on free Burnside groups, which encompasses the bounded Burn-
side problem:

Definition 1.1. The free Burnside group B(r, b) is defined as the largest group with r gener-
ators and a bound b on the order of every element. That is, for every element g there exists
some k ≤ b such that gk = e.

The open Burnside problem. For which (n,m) is the free Burnside group
B(n,m) finite?

Trivial cases exist, such as B(1,m) ∼= Cm. Nontrivial solutions and insights are explored in a
later section.

The Burnside problems were motivated by the simple observation that all known finitely
generated infinite groups were not periodic. Burnside wrote about this in his 1902 paper[1],
and answered a few of the easier cases of the open problem. This set of problems heavily
influenced the development of combinatorial group theory, and are still fascinating to this day.
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From 1902 to 1964, much work was done on the open Burnside problem, some by Burnside
himself. In 1930, a new variation called the restricted Burnside problem. This is introduced
purely for historical context, and we do not cover its solution in this paper.

The restricted Burnside problem. If B(r, n) is finite, is its order bounded
by a number dependent only on r, n?

The solution for the restricted Burnside problem of prime n was studied by Alexei Ivanovich
Kostrikin in the 1950s. Much later, in 1989, Efim Isaakovich Zelmanov answered the problem
in the affirmative for arbitrary exponent. He was awarded the Fields Medal in 1994 for his
work.

It was not until 1964 that first solution to the general Burnside problem was found by
Evgeny Golod and Igor Shafarevich, who constructed a finitely generated periodic group with
infinite elements. Later, Rostislav Grigorchuk published a paper containing the construction of
a Grigorchuk group, providing another solution to the general Burnside problem. This paper
explores the Golod-Shafarevich construction, Grigorchuk construction, and finally some of the
cases of the open Burnside problem that were addressed by Burnside himself.

2. General Background

We start with a few definitions in order to understand the problem and the ideas behind its
solutions.

Definition 2.1. Groups
A group is a set equipped with an operator such that the elements of the set abide by four

rules. Let us mark our operator using ∗
(1) Closure: For any a, b ∈ G, a ∗ b ∈ G
(2) Identity: There exists some e ∈ G such that for any g ∈ G, g ∗ e = e ∗ g = g
(3) Invertability: For every g ∈ G there exists some g−1 such that g ∗ g−1 = g−1 ∗ g = e

where e is the identity element.
(4) Associativity: The operation of the group is associative. a∗b∗c = (a∗b)∗c = a∗(b∗c)

for any a, b, c ∈ G

A group is abelian if the group operation is commutative.

Definition 2.2. Generators
In the study of groups, a subset is a generating set if any element in the group can be

expressed as a product of the elements in the generating set.

It can also be thought of as starting with the generating set and appending products of
elements to the set. Once no new elements can be formed, the set is closed and the entire group
has been generated.

Definition 2.3. Order of Groups and Elements
Groups have order, which is simply the number of elements in the group. Elements of a group

also have order, but in this case it refers to the smallest positive integer n such that gn = e. A
group where every element is of finite order is called a periodic group.

Definition 2.4. Conjugates of Elements
The conjugate of an element g by another element h is defined as hgh−1.

Proposition 2.5. The order of an element is the same as the order of its conjugate.
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Proof. Consider the elements g and h. Let g have order n, meaning gn = e. Now consider the
conjugate of g by h, hgh−1. Raising this to the power n gives (hgh−1) = hgh−1hgh−1 . . . hgh−1︸ ︷︷ ︸

n times

=

hg(h−1h)g(h−1 . . . h)gh−1︸ ︷︷ ︸
n times

= hgnh−1 = heh−1 = e.

We now have all the definitions required to understand the Burnside problems. However, a
little more is required to understand the constructions used to solve the Burnside problems.
From here onward, set-set multiplication is done by the Cartesian set product, but instead of
returning a set of ordered pairs of elements, it returns a set of products of elements.

As an example, let S, S1, S2 be sets, g be some element, and ∗ denote some defined multipli-
cation for g and the elements of S, S1, S2. Element-set (gS) and set-set (S1S2) multiplication
is as shown below.

gS = {g ∗ s : s ∈ S}, Sg = {s ∗ g : s ∈ S}

S1S2 = {s1 ∗ s2 : s1 ∈ S1, s2 ∈ S2}

Definition 2.6. Cosets
A coset is the product of a subgroup N with an element a /∈ N . aN is a “left coset” and Na

a “right coset”. If the group is abelian, its left cosets and right cosets are the same. We call a
a representative of the coset.

Proposition 2.7. Every element in a coset can act as a representative of it.

Proof. Let A = a1N be a left coset of G created by some a1 /∈ N . Let a2 be another element
in A. There must be some b ∈ N such that a1b = a2. This gives a

−1
1 a1b = a−1

1 a2 so b = a−1
1 a2.

bN = N because N is a group, so a−1
1 a2N = N . Thus a2N = a1N , and both a1 and a2 are

representatives of A. The same concept can be applied to right cosets.

A subgroup is said to be normal if and only if it partitions the group into cosets that form a
group under the set-set product defined earlier. This group is called a quotient group, and is
denoted G/N for a normal subgroup N of a group G.

In order for the cosets determined by a subgroup N to form a group, closure must be shown
(as well as associativity, identity, and invertability, but those are trivial). This means the
product of two cosets, however it is defined, must be another coset. AN = aNN = aN = A
because NN = N because N is closed. In order for the cosets to form a group, aNb must
be another left coset of N . Let us find one element of this resulting coset by using e from N .
aeb = ab. Therefore the resulting coset of AB must be abN . This can be further reduced to
gNg−1 = N .

If aNb = abN then Nb = bN , so left and right cosets by a normal subgroup are identical.
This leads us to bb−1N = bNb−1 = N . In fact, this identity is equivalent because we can also go
from bNb−1 = N to aNb = abN by aNb = a(bNb−1)b = abN . We can now define the normal
subgroup.

Definition 2.8. Normal Subgroups
A normal subgroup is a subgroupN that is invariant under conjugation, meaning gNg−1 = N .

Notice that for an abelian group, every subgroup is normal.
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3. Background for Golod-Shafarevich

The first solution to the general Burnside problem requires further knowledge of abstract
algebra. While groups are powerful structures, they are limited to one operation. To model
sets with multiple operations, other group-like structures with multiple operations are used.
These structures are used in the Golod-Shafarevich construction.

Definition 3.1. Rings
A ring is a set of elements and two operations called addition and multiplication. These

operations can be defined in any way that satisfies the conditions of a ring.

(1) Addition: The elements of the ring must form an abelian group under the defined
addition of the ring. The additive identity is often denoted as “0”.

(2) Multiplication: The elements of the ring must be closed under multiplication. If there
is a multiplicative identity (not required), it is usually denoted as “1”.

(3) Associativity: Multiplication must be associative.
(4) Distribution: The distributive property must hold. (a)(b+ c) = ab+ ac.

An interesting result of rings is that the additive identity 0 always ends up being an absorbing
element by multiplication. 0a = 0. This is easily derived using the distributive property. An
element g if a ring is said to be nilpotent if there exists some n such that gn = 0.

Rings have a property called characteristic, which is the smallest positive integer n such that

∀a ∈ R, a+ a+ · · ·+ a︸ ︷︷ ︸
n times

= 0

If there is a multiplicative identity in R, this definition is equivalent to

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0

.
If there is no such n, the characteristic is said to be 0.
An ideal of a ring is akin to a normal subgroup of a group.

Definition 3.2. An ideal I of a ring R is a subset of R that divides the ring into cosets that
themselves form a ring, called a quotient ring. This requires the following properties:

(1) I is closed under addition and multiplication
(2) I is absorbing under multiplication, meaning ∀a ∈ R, aI = I

The idea of cosets and representatives exists in rings as well. However, in rings, addition is
used to form the cosets (ex. A = a+I for some ideal I and representative a). Ideals are “sided”
similar to cosets.

With this comes the notion of generating an ideal. Often, the set given for generation does not
actually generate an ideal in the same way generators of a group generate the group. Generating
an ideal actually means taking the smallest ideal of a ring that includes the elements in the
given generating set.

A field is similar to a ring, but has inverses and identity for multiplication, and is commuta-
tive.

Definition 3.3. Fields
A field is a set of elements with two operations called addition and multiplication. These

operations can be defined in any way that satisfies the conditions of a field.
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(1) Addition: The elements of the field must form an abelian group under the defined
addition of the ring. The additive identity is commonly denoted as “0”.

(2) Multiplication: The elements of the field must form an abelian group under the defined
multiplication of the ring. The multiplicative identity is usually denoted as “1”.

(3) Distribution: The distributive property must hold. (a)(b+ c) = ab+ ac.
(4) Scalar Commutativity: ax1 ∗ bx2 = abx1x2.

Field also have characteristics. Because fields are more restrictive than rings, some properties
arise.

Proposition 3.4. The characteristic of a field is always prime.

Proof. Assume the characteristic k is not prime. Then k can be written as a product of two
integers, α and β. Thus

(1 + 1 + · · ·+ 1)︸ ︷︷ ︸
α times

+(1 + 1 + · · ·+ 1)︸ ︷︷ ︸
α times

+ · · ·+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
α times︸ ︷︷ ︸

β times

= 0

By closure,

(1 + 1 + · · ·+ 1)︸ ︷︷ ︸
α times

= g ∈ F

Now there are two cases.
The first case: g = 0. In this case,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
α times

= 0

α < k thus the field must be in characteristic α, not k.
The second case: g ̸= 0. In this case,

(g + g + · · ·+ g)︸ ︷︷ ︸
β times

= 0

Consider

(g + g + · · ·+ g)︸ ︷︷ ︸
β times

∗g−1 = 0 ∗ g−1 = 0

By the distributive property,

(1 + 1 + · · ·+ 1)︸ ︷︷ ︸
β times

= 0

thus the field is in characteristic β, not k.

Proposition 3.5. The characteristic of a field always divides the order of the field.

This is due to Lagrange’s Theorem, which states that the order of any subgroup must divide
the order of the whole group. The characteristic of a field is just the order of the additive
subgroup generated by 1, thus it must divide the order of the field.
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Putting these two properties together, we find that if a field has a prime p elements, the
characteristic of the field must be p.
An algebra over a field, or just an algebra for short, is similar to a vector space. This structure

is denoted A = F ⟨x1, x2, . . . ⟩ where F is a field and xi are vectors in some space. There must
be defined scalar multiplication.

For the Golod-Shafarevich construction, we describe free algebra.

Definition 3.6. Free algebra (over a field)

(1) Basis: The basis vectors of a free algebra F ⟨x1, x2, . . . ⟩ are all the words formed by
⟨x1, x2, . . . ⟩. These vectors are linearly independent.

(2) Multiplication: Multiplication of two vectors is defined as the concatenation of the
words representing vectors. Multiplication is not necessarily commutative. Multiplica-
tion follows the distributive property.

(3) Identities: The additive identity of the vector space is the zero vector. Multiplying
any vector by the additive identity 0 of the field yields the zero vector. Multiplicative
identity is only present in the scalar multiplication, where 1v = v for any vector v.

It is also possible to take the ideal of an algebra, with the same requirements used for rings.

4. Golod-Shafarevich Construction

This construction, adapted from (uncudh, 2009), utilizes the Golod-Shafarevich theorem,
which we do not prove.

Let A = F ⟨x1, ..., xn⟩ be the free algebra over a field F of non-commuting variables xi. Let
I be the two-sided ideal of A generated by homogenous elements fj of degree dj such that
2 ≤ d1 ≤ d2 ≤ .... Let ri be the number of dj = i. The fundamental inequality of Golod-
Shafarevich leads to:

Theorem 4.1. If all ri ≤ (n−1)2

4
, A/I is infinite dimensional.

Proof. This is due to (Golod & Shafarevich, 1964).

Now we show the construction of an infinite, periodic group from finite generators using a
similar construction to the one shown for the theorem. Let F be a field of a prime p order. Let
T = F ⟨x1, x2, x3⟩ be the free algebra over F . Let T ′ be the ideal of T consisting of all elements
of T without constant term. Let Tn be the subspace of T consisting of all homogeneous elements
of degree n.

List the elements of T ′ as t1, t2, . . . . Choose an integerm1 ≥ 2 and write tm1
1 as v1+v2+. . .+vk1

where vi ∈ Ti. Now choose some large enough integer m2 such that tm2
2 can be expressed as

vk1+1 + vk1+2 + . . .+ vk2 . Continue for all tn ∈ T ′. Now let I be the smallest two-sided ideal of
T containing all vi, in other words the two-sided ideal generated by vi.
Now let a1, a2, a3 be the elements x1 + I, x2 + I, x3 + I of T/I. Let G be a multiplicative

semi subgroup of T/I generated by the elements 1 + a1, 1 + a2, 1 + a3. G is finitely generated
and we will proceed to show that it is also infinite and periodic, satisfying the conditions of the
general Burnside problem.

Proposition 4.2. G is a proper periodic group.

Proof. tmi for some large enough m can be written as a sum of vi, which is an element in I.
Therefore every a ∈ T ′/I is nilpotent, as the representatives of a are elements of T ′, which will
all land back in I after being raised to some m. For some large enough n, ap

n
= 0. We are in

characteristic p due to proposition 3.5, so (1 + a)p
n
= 1 + ap

n
= 1. Therefore any 1 + a has an
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inverse (1+a)o−1 where o is the smallest positive integer such that (1+a)o = 1. Every element
of G can be written as 1 + a as it was generated completely from (1 + ai), so G is a proper

periodic group.

Using the Golod-Shafarevich inequality, T/I is infinite-dimensional. For our construction,

ri = 1 for all i, and n = 3. Thus we satisfy ri ≤ (n−1)2

4
and can conclude that T/I is infinite-

dimensional.

Proposition 4.3. G is an infinite group.

Proof. Suppose G was finite. The linear combinations of elements of G would form a finite-
dimensional algebra A over F . 1+ai and 1 are in G, so (1+ai)−1 = ai ∈ A. 1, a1, a2, a3 are all
in B. This set of elements generates all of T/I, which we know to be infinite-dimensional. Thus

B must also be infinite-dimensional, so we have a contradiction, and G must be infinite.

We have now shown that G is an infinite, finitely generated, periodic group, answering the
general Burnside problem. However, there is no bound on the order of elements, as we simply
chose some large enough number mi in our construction, so it does not answer the bounded
Burnside problem.

5. Automata Groups

Golod and Shaferivich’s work on the burnside problem was interesting, but not direct. It was
merely a byproduct of their work on class-field towers. Here, we construct an automata group
that is interesting for a number of reasons. For this paper, we are only interested in its relation
to the general Burnside problem. This automata require much less knowledge of advanced
abstract algebra, but a general understanding of state machines. This section is adapted from
(Feuilloley, 2018).

A state machine is represented as a graph. Think of using the machine as traversing the graph
according to a set of instructions. The state machines used here are called mealy machines,
which return an output in addition to traversing the graph. We define our input as a string of
letters from some alphabet a. Think of each state as a function, which takes in a string and,
depending on the first character of the string, returns the concatenation of the corresponding
output and the call of the corresponding function on the rest of the string (excludes the first
character). In the case that the input word is of length one, the function only returns the
corresponding output, ommiting the function call.

This paper uses a standard formatting for these graphs. The labels of the nodes serve only as
names and do not contribute to the output. Instead, the machine interprets the input according
to the labels of the edges. Traverse the graph according to first letter (on the left of the mid
line) and write to the output according to the second letter (on the right of the mid line). Once
we have finished following our input “instructions” we are done.

As a simple example, we can construct a machine that adds one to any binary number. We
define our alphabet a = {0, 1} and write our words as binary numbers, but with reverse digits.
For example, 8 would be written as 0001.

a e1 | 0
0 | 1

0 | 0
1 | 1

In this diagram, inputting a reversed binary number into state a outputs that binary number
plus one in the same format. For example, we can pass in 1011 as 13. Following the graph, we
can read the letter by letter path as
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a a e e e
1 | 0 0 | 1 1 | 1 1 | 1

or

a a e e e

1

0

0

1

1

1

1

1
We can also follow this path in an equation a(1011) = 0+a(011) = 01+e(11) = 011+e(1) =

0111. Here, “+” denotes concatenation, not numerical addition. This gives us the output 0111,
which is 14 in binary, reversed. Alternatively, we can tell the machine to read right to left. This
way, we can input a binary number without needing to reverse it. In this case, the number 13
would be represented as 1101, and a(1101) = a(110) + 0 = e(11) + 10 = e(1) + 110 = 1110,
which represents the number 14. Fortunately, the implementation is not very important as the
abstraction of adding one still holds.

The functions on a word that correspond to inputting that word into the machine at some
state can be put under function composition. From here, we check if this forms a group. e acts
as the identity, since for any word w, e(w) = w. a is more complicated, but if we adhere to the
abstraction of it adding one to the numerical value of the word, the powers of a become clear.
an is a function that adds one to a number n times. Unfortunately, this does not generate a
group because we have no way of getting an element that corresponds to subtracting a value
from a number. What we can do is limit the size of our words to l digits. If we do this, then
adding one to a string full of 1’s will put us back at zero, because the one overflows into the
place value l + 1. Thus a2

l
= e, generating a cyclic group of order 2l.

These machines have many creative use cases, especially in computer science. For example,
here is a machine that detects the substring 1101 and writes a 1 to the output at the index of
the last character of the substring, while the other indicies have 0 as a sort of filler element.

ϵ a b c d
1 | 0

0 | 0
1 | 0

0 | 0
1 | 0

0 | 0 1 | 1

0 | 0

1 | 0

0 | 0

This works by starting at state ϵ. When the first character (1) in the substring (1101) is
found, the machine changes to a state a, which looks for the second character (0). If the second
character (1) appears, we move to b to check for the third character. If it finds a 0, we cannot
be in the correct substring so we reset to the starting state ϵ. Note that for the state b, which
checks for the third character, if we find a 1, we would have 111 and we can start looking for
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the substring at the second 1, meaning we want to now check for the third character, so we
start at state b. This structure continues for the length of the substring, until it reaches the end
and writes a 1 to the output. These machines are extremely powerful and versatile, and have
much more complex and abstract applications. In this paper, we are concerned with general
Burnside problem and the Grigorchuk automata.

6. The Grigorchuk Group

Now that we are familiar with automata, we can get back to the Burnside problem. This
section focuses on the Grigorchuk automata and the group generated by it.

b

c

d

a e

1 | 1

0 | 0

0
| 0

1
| 1

1 | 1

0 | 0

0 | 1

1 | 0
0 | 0
1 | 1

In order to construct the Grigorchuk group G, we treat the states (functions) as elements of a
group under function composition, just as we did for the binary incrementer.

7. Binary Trees

To show that this group is a solution to the general Burnside problem, let us consider these
functions as automorphisms on an infinite binary tree. Instead of just taking an input and
running through the machine, we represent all inputs in one tree. This section is adapted from
(Hudec, 2006).

Let Ts denote the binary tree with a root node of s. The tree TØ is the tree starting at the
empty word and looks like this:

Ø

0

00

. . .

. . . . . .

. . .

. . . . . .

01

. . .

. . . . . .

. . .

. . . . . .

1

10

. . .

. . . . . .

. . .

. . . . . .

11

. . .

. . . . . .

. . .

. . . . . .

One can pick out any valid input (a word) by taking a path down the tree, defined by some
sequence of left and right decisions. Each function in the Grigorchuk group G can be represented
as an automorphism of the tree. The morphism, which represents an element g ∈ G, is defined
such that for any word w with path p in the default binary tree, taking p in g(TØ leads to the
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word g(w). The key concept is that the tree allows us to look at the function’s behavior on all
words at the same time.

So what do the morphs look like? First off, e has no change from input to output, as it acts
as a sort of identity element. a performs exactly one “flip” (0 | 1, 1 | 0), before going to e,
which means all characters after the first will not be affected. Now we can represent a as a
transformation on TØ:

a

We call this a morph tree. This is a different structure than a(TØ), which would look like
this:

Ø

1

10

. . .

. . . . . .

. . .

. . . . . .

11

. . .

. . . . . .

. . .

. . . . . .

0

00

. . .

. . . . . .

. . .

. . . . . .

01

. . .

. . . . . .

. . .

. . . . . .

Notice that only the first branches are swapped. We can stop looking at the image of a
branch if it goes to state e because there are no swaps in the e tree. Remember that a is a
transformation, it can be applied to any tree, not just TØ. For example, applying a to a(TØ)
gives a(a(TØ)). This is equivalent to swapping the left and right subtrees, then swapping them
again. Obviously, this leaves us back where we started, at TØ. This also tells us that a has an
order of two.

The trees for b, c, and d are a little more complicated, as a flip (which looks like a swap in
the tree) can occur at any depth into the input word, only when it reaches state a.

b

a
c

a
d

e
b . . .

c

a
d

e
b

a
c . . .

d

e
b

a
c

a
d . . .

Figure 1. functions b, c, and d as automorphisms of a binary tree

Notice how b, c, and d are all roughly the same recursive structure, just starting at different
states.

Think of composing functions as composing morphs to a tree. This is the same as overlaying
the trees and cancelling when two swaps are in the same place. Of course, composing b with
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itself would yield the identity transformation, as all the swaps are in the same positions. Using
this idea,

Proposition 7.1.
a2 = b2 = c2 = d2 = e

and after further observation

Proposition 7.2.
bc = cb = d, cd = dc = b, bd = db = c

Now we introduce a new way to describe transformations. Let ϕ0(m) denote the left subtree
of an automorphism tree m, and ϕ1(m) the right subtree. Let ψ(m) = (ϕ0(m), ϕ1(m)). Let G
be the group of automorphisms generated by a, b, c, d, e. Consider the subgroup S of G where
every automorphism in S does not swap the immediate left and right subtrees of any T . For
every s ∈ S, there exists a pair (g0, g1) ∈ G × G where ψ(s) = (g0, g1). Note that ψ does not
retain the full information of a transformation, as it does not capture the swap (or lack of swap)
between the first two branches.

Proposition 7.3. For two elements s1, s2 ∈ S, ψ(s1s2) = ψ(s1)ψ(s2). In other words, ψ of a
product is the same as the product of the ψ’s, if the product is in S.

This is because the left and right subtrees remain independent when considering elements of
S. As an example,

ψ(bc) = ψ(d) = (e, b)

ψ(b)ψ(c) = (a, c)(a, d) = (aa, cd) = (e, b)

ϕ0 and ϕ1, which are homomorphisms, have interesting properties when applied to conjugates
of elements. In our group, for γ ∈ {b, c, d}, the conjugate by a is a−1γa = aγa. From here on,
the conjugate of an element refers to the conjugate of that element by a, unless specified.
Imagine the default binary tree T . Call the left subtree T0 and the right subtree T1. Apply

the conjugate of γ to T and observe what it does to the tree. First, we swap T0 and T1 to be
on the right and left, respectively. Now we apply γ. ϕ0(γ) is applied to T1 and ϕ1(γ) is applied
to T0. Finally we apply a again, swapping T0 and T1 back to their original sides. Observe that
ϕ0(γ) was applied to the right subtree, and ϕ1(γ) to the left. Thus ψ(aγa) = (ϕ1(γ), ϕ0(γ)).

b

a
c

a
d

e
b . . .

aba

a
c

a
d

e
b . . .

Figure 2. A comparison of b and its conjugate
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Proposition 7.4. ϕ0 and ϕ1 are surjective.

Proof. Recall that G is generated by {a, b, c, d, e}, and any element can be written as a product
of terms in the generating set. We will represent elements as words, where the alphabet is the
generating set of the group.

ψ (b) = (a, c)
ψ (c) = (a, d)
ψ (d) = (e, b)

Applying a word to a tree T will apply some other word to both subtrees, as every element
in the image of ψ is part of the generating set. In fact, it contains the entire alphabet. Using
conjugates, we obtain

ψ (aba) = (c, a)
ψ (aca) = (d, a)
ψ (ada) = (b, e)

Notice how every element {a, b, c, d, e} is in the images of both ϕ0 and ϕ1. Thus, we have
a way of applying any word to either depth one subtree through automorphisms on the entire
tree. Clearly, this extends to further depths, though they are not necessary for this proof. It
naturally follows that ϕ0 and ϕ1 surject onto G.

We have a surjection from S ⊂ G onto G, thus S (and consequently G) must be infinite.
Another way to look at it is for any s in S, there exists some s′ such that ϕ0 (s

′) = s. This s′

must be included in S, so for s′ there is some s′′, resulting in some s′′′, etc. All these will apply
s to a deeper left subtree than the previous, thus every element generated by this process is
unique. This process can also be repeated forever, so it generates an infinite number of unique
elements.

Having shown the group to be infinite, and because we defined it to be finitely generated,
all that is left is to show that each element is of finite order. In the Grigorchuk group, we find
something more specific. The Grigorchuk group is a two-group. That is, every element has an
order of a power of two.

Proposition 7.5. The Grigorchuk group is a two-group.

Proof. Let k be the length of the reduced word w representing an element g ∈ G from the
alphabet {a, b, c, d, e}.

Consider the bases cases k = 0, k = 1, and k = 2. It is not necessary to show all of them,
but they are interesting. If k is 0, g must be e, the identity, thus g has an order of 1. If k is 1,
g ∈ {a, b, c, d} and has an order of 2.

For k = 2, we find that every element must be the product of a and another element, as
all combinations of {b, c, d} are reducible by proposition 7.2. Thus w is of the form aγ or γa
for any γ ∈ {a, b, c, d, e}. Observe that (ad)2 = (ad) (ad) = (ada) d which has ψ (ada) = (b, e)
and ψ (d) = (e, b). This means ψ (adad) = (b, b). b has an order of 2 and the subtrees are
independent, so adad has an order of 2, making ad have an order of 4. This also applied to da
because we have (da)2 = dada = d(ada).

Now consider ac. Following a similar process, (ac)2 has ψ(acac) = ψ(aca)ψ(c) = (d, a)(a, d) =
(da, ad). We know that ad and da have an order of 4, so ((ac)2)4 gives ψ(acac)4 = (da, ad)4 =
(e, e). Therefore ac and ca have an order of 8.
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Finally we have ab. (ab)2 has ψ(abab) = ψ(aba)ψ(b) = (c, a)(a, c) = (ca, ac). Both ac and
ca have an order of 8, so ((ab)2)8 gives ψ(abab)8 = (ca, ac)4 = (e, e). Thus ab and ba have an
order of 16.

We proceed by induction on k. Assume for all k ≥ 3, all g of length k − 1 or less have an
order of a power of 2.

First case: k is odd. This means w must be of the form aγ1aγ2 . . . γna or γ1aγ2a . . . γm where
γi ∈ {b, c, d}, because any pair of {b, c, d} can be reduced. The first case can be written as the
conjugate of some h by a. This h has at most length k − 2, which by the induction hypothesis
means h is of finite order, a power of two. By Proposition 2.5, elements have the same order
as their conjugate, thus w and therefore g has finite order, a power of two. For the second
case, we can take the conjugate of w by γ1, call it ω = γ1γ1aγ2a . . . aγmγ1 = aγ2 . . . a(γmγ1). If
γm ̸= γ1, then the last term γmγ1 reduces to one of {b, c, d}, meaning ω has a length of k− 1. If
γm = γ1, then γmγ1 = e and ω has reduced length k−2. In either case, the induction hypothesis
guarantees ω has an order of a power of two. Again, any element has the same order as its
conjugate, so w also has an order of a power of two. We have just shown, for odd k, g has an
order of a power of 2.

Second case: k is even. We have two subcases, g is either of the from aγ1aγ2 . . . γn or
γ1aγ2a . . . γma. However, the second case has the same order as its conjugate by γ1, written
γ1gγ1, which has the form aγ2aγ3 . . . aγ1. Thus showing the first case to have order of a power
of two is sufficient to prove the same for the second case.

Again we split into two cases. Suppose the number of a’s in the reduced word of g is even.
Then we must have g ∈ S1. This means we can look at ψ(g) = ψ(aγ1a)ψ(γ2) . . . ψ(γn) =
(w0, w1). Notice that every individual ψ term is a pair of elements, both at most of length one.
It then follows that the lengths of w0 and w1 are at most k

2
. By the induction assumption, they

both have a finite order of a power of two. g has an order of the least common multiple of the
orders of w0 and w1, meaning it must also have order of a power of two.
Finally, we look at the last case, where k is even and the number of a’s in w is odd. Consider

w2, which is twice as long as w. This is in S1 because the number of a must be even, as the
number of a’s is double the number in w. Let (α, β) = ψ(w2). Both α and β have at most a
length of k, due to the same reasoning used in the previous paragraph for w0 and w1. We shall
prove that α and β are of finite order, a power of two, which means w2 also has finite order,
again a power of two.

(1) The reduced word w2 contains d. If it contains d, it also contains the conjugate, as
if we consider w2 as writing w twice, in the same line, we can associate the first w to
have d and the second to have ada. Because ψ(d) = (e, b) and ψ(ada) = (b, e), the
reduced words α and β have at most length k−1 (we can omit the e). By the induction
assumption, these words have finite order, a power of two, and we are done.

(2) The reduced word w2 contains c. Again, this means c and its conjugate aca appear
somewhere in w2. ψ(c) = (a, d) and ψ(aca) = (d, a). So either α and β can be reduced,
and by induction we are done, or they contain d. If they contain d, we can use the same
argument used in 1) to show that α2 and β2 (thus α and β) are of finite order, a power
of two.

(3) The reduced word w2 contains b and, consequently, its conjugate. ψ(b) = (a, c),
ψ(aba) = (c, a). α and β, in the case that they cannot be reduced, must contain c.
Then we can use the same argument used in 2) to show α2 and β2 (and thus α and β)
are of finite order, a power of two.
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All words of even length must fall into at least one of those three cases, meaning any element
reducible to a word of even length must have an order of a power of two.

Finally, we have proved every element of the Grigorchuk group to be of finite order. Thus,
our final condition is satisfied, and we have shown this group to be infinite, finitely generated,
and periodic, answering the general Burnside problem in the negative.

8. The Open Burnside Problem

So far we have dealt with specific examples, constructions, that answered the general Burnside
problem. Interestingly, though perhaps not surprisingly, approaches to the open Burnside
problem were not similar. This section is adapted from (Goh, 2020).

Besides B(1, n) ∼= Cn, there are a few more small cases, which Burnside mentioned in his
1902 paper. B(r, 2) is one of them. Take elements s, t. Each element has an order of two, so
s2 = t2 = (st)2 = e. Now stst = e and by multiplying by s on the left and t on the right we
find st = ts thus B(r, s) is abelian. This completely defines the quotient group (Z/2Z)r, thus
the groups must be isomorphic and B(r, 2) has order |(Z/2Z)r| = 2r.

Burnside groups of exponent three have also been solved.

Proposition 8.1. For r ≥ 1 the order of B(r, 3) is 3m(r) for m(r) ≤ 3r−1.

Proof. The group is a three group, and has an order of a power of three. Note that (st)3 = e
implies

(s−1t−1s−1)(ststst) = (s−1t−1s−1)e

= tst = s−1t−1s−1 (1)

for any s, t in the group.
When r = 1, our group is of order three, thus we can find a m(1) ≤ 30 by m(1) = 1. Proceed

by induction on r.
Assume our claim |B(k, 3)| = 3m(k) holds for some integer k. Form B(k+1, 3) by adding one

new generator to the set of generators. We can write any element s ∈ B(k + 1, 3) as

s = s1g
±1s2g

±1 . . . g±1sn

Our goal is to now reduce the number of g’s through reductions on s, mostly using the identity
(1). The first reduction we make is for consecutive g’s of the same sign. By (1) we have

gsig = s−1
i g−1s−1

i and g−1sig
−1 = s−1

i gs−1
i

where t is g±1. Though the length of the word is the same, this representation is more useful
for us because it reduces the number of g’s, thus we will write s in a form with alternating signs
of g. Remember g3 = e, so we can make further reductions.

s = s1 . . . sigsi+1g
−1si+2g . . . sn

= s1 . . . sigsi+1ggsi+2g . . . sn

= s1 . . . si(gsi+1g)(gsi+2g) . . . sn

= s1 . . . si(s
−1
i+1g

−1s−1
i+1)(s

−1
i+2g

−1s−1
i+2) . . . sn

= s1 . . . sis
−1
i+1(g

−1s−1
i+1s

−1
i+2g

−1)s−1
i+2 . . . sn
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and we can continue this reduction process over and over again. This allows us to write any
element in B(k + 1, 3) with a maximum of two g±1’s. Through further reductions, we see

s1g
−1s2gs3 = s1(g

−1s2g
−1)g−1s3 = s1s

−1
2 gs−1

2 g−1s3

so any s can be represented as one of the forms

s1, s1gs2, s1g
−1s2, s1gs2g

−1s3

For the first form, we have 3m(k) possibilities as |B(k, 3)| = 3m(k). For the second and third
forms, we find all combinations of two elements, where order matters, so we get 3m(k)3m(k) =
32m(k). For the fourth form, we have 33m(k). Thus

|B(k + 1, 3)| = 3m(k) + 2 ∗ 32m(k) + 33m(k) = 3m(k+1) < 33m(k)+1

m(r) is an integer so m(k + 1) ≤ 3m(k) ≤ 3k thus we satisfy m(r) ≤ 3r−1 and |B(k + 1)| ≤
33

k
.

In 1993, F.W. Levi and B.L. van der Waerden found the exact value of m(r) to be

m(r) =

(
r

3

)
+

(
r

2

)
+ r

Surprisingly, Burnside groups of exponent larger than three are much more mysterious. We do
not know the orders of B(r, 4) for r > 5. However, B(r, 4) has been shown to be finite for any
r.

For n not equal to 2, 3, 4, 6 it is not known whether or not B(r, n) is finite. However, it has
been shown that there are n such that B(r, n) is infinite. This was produced by Novikov and
Adian in 1968, when they proved B(r, n) infinite for all odd n ≥ 4381, and solved the bounded
Burnside problem. This result was improved to odd n ≥ 665 in by Adian in 1975, and then to
odd n ≥ 101 in 2015, again by Adian.

This century old problem has lead to great advancements in many areas of abstract algebra,
and still remains partly unsolved to this day. Even something as small as B(2, 5) has unknown
order.
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