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Random Graphs

Definition

A random graph G (n, p) is the probability space of graphs with n vertices,
such that each edge has probability p of being in the graph.
Alternatively, G (n,m) is the probability space of graphs with n vertices
and m edges, with each edge having equal probability of being chosen.

G
(
3, 12

)
:
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Thresholds

Definition

A threshold r(n) for a property A is a function such that, as n → ∞,

Pr[G (n, p) ∈ A] →

{
0 if p ≪ r(n),

1 if p ≫ r(n),
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History

1959: Erdős and Rényi published On random graphs, introducing the
model G (n,m)

1959: Gilbert proposed G (n, p) model

1969: Travers and Milgram studied the small world problem

1984: Béla Bollobás published Random Graphs

2006: Kahn-Kalai conjectured expectation threshold ≈ phase
transition

2022: Park and Pham proved the Kahn-Kalai conjecture
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First and Second Moment Methods

Theorem (Markov’s Inequality)

For nonnegative X and positive a, Pr[X ≥ a] ≤ E[X ]
a .

Theorem (Chebyshev’s Inequality)

Let µ and σ denote the mean and standard deviation of nonnegative X .
For positive λ,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
.

Corollary

For nonnegative X ,

Pr[X = 0] ≤ Var[X ]

E[X ]2
=

E[X 2]− E[X ]2

E[X ]2
.
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Containing Triangles

Theorem

The threshold for containing triangles is p = 1
n .

X = # of triangles

E[X ] =
(n
3

)
p(

3
2) = O(n3)p3

p ≪ 1
n : Markov’s Inequality

Pr[X ≥ 1] ≤ E[X ]/1 = O(n3)p3 ≪ 1

p ≫ 1
n : E[X 2], expected number of pairs of triangles

4 cases: share 0,1,2,3 vertices
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Containing Triangles: Casework

0 shared vertices: O(n6)p6

1 shared vertex: O(n5)p6

2 shared vertices: O(n4)p5

3 shared vertices: O(n3)p3

Var[X ] = E[X 2]− E[X ]2

∼ O(n6)p6 + O(n5)p6 + O(n4)p5 + O(n3)p3 − O(n6)p6

= O(n6)p6
(
1

n
+

1

n2p
+

1

n3p3

)

Pr[X = 0] ≤ Var[X ]
E[X ]2

≪ 1
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Containing Cliques

Theorem

The threshold for containing K4 is p = n−
2
3 .

Theorem

The threshold for containing K5 is p = n−
1
2 .

...

Theorem

The threshold for containing the complete graph on r vertices (Kr ) is

p = n−
2

r−1 .
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Connectivity

Theorem

The threshold for connectivity is p = log n
n .

Xk = # of components of order k

p ≪ log n
n

isolated vertices:
E[X1] = n(1− p)n−1,E[X 2

1 ] ≤ E[X1]
2 + 1

Chebyshev’s Inequality

p ≫ log n
n

E[Xk ] ≤
(
n
k

)
kk−2pk−1(1− p)k(n−k)

Markov’s Inequality:
∑⌊n/2⌋

k=1 E[Xk ] → 0 suffices
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The Galton-Watson Branching Process

Consider an organism that reproduces by having a random number of
children, X

Does the population eventually go extinct?

if E[X ] < 1, yes
if E[X ] > 1, possibly
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The Giant Component

introduced by Erdős and Rényi

traversing components: modeled by the branching process

small components: O(log n)

large components: O(n)

p = c
n :

c < 1 : many small components
c > 1 : giant component and small components
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The Giant Component
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The Giant Component
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Thank you

Thanks for listening!
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