Random Graphs

Catherine Li

Euler Circle

July 2021

Catherine	

Image: A mathematical states and a mathem

æ

Definition

A random graph G(n, p) is the probability space of graphs with *n* vertices, such that each edge has probability *p* of being in the graph. Alternatively, G(n, m) is the probability space of graphs with *n* vertices and *m* edges, with each edge having equal probability of being chosen.

Definition

A random graph G(n, p) is the probability space of graphs with *n* vertices, such that each edge has probability *p* of being in the graph. Alternatively, G(n, m) is the probability space of graphs with *n* vertices and *m* edges, with each edge having equal probability of being chosen.

$$G\left(3,\frac{1}{2}\right)$$
:

Definition

A random graph G(n, p) is the probability space of graphs with *n* vertices, such that each edge has probability *p* of being in the graph. Alternatively, G(n, m) is the probability space of graphs with *n* vertices and *m* edges, with each edge having equal probability of being chosen.

Thresholds

Definition

A threshold r(n) for a property A is a function such that, as $n \to \infty$,

$$\Pr[G(n,p) \in A] \to \begin{cases} 0 & \text{if } p \ll r(n), \\ 1 & \text{if } p \gg r(n), \end{cases}$$

э

Thresholds

Definition

A threshold r(n) for a property A is a function such that, as $n \to \infty$,

$$\Pr[G(n,p) \in A] \rightarrow \begin{cases} 0 & \text{if } p \ll r(n), \\ 1 & \text{if } p \gg r(n), \end{cases}$$

- 1959: Erdős and Rényi published On random graphs, introducing the model G(n, m)
- 1959: Gilbert proposed G(n, p) model
- 1969: Travers and Milgram studied the small world problem
- 1984: Béla Bollobás published Random Graphs
- \bullet 2006: Kahn-Kalai conjectured expectation threshold \approx phase transition
- 2022: Park and Pham proved the Kahn-Kalai conjecture

Theorem (Markov's Inequality)

For nonnegative X and positive a, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$.

э

Theorem (Markov's Inequality)

For nonnegative X and positive a, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$.

Theorem (Chebyshev's Inequality)

Let μ and σ denote the mean and standard deviation of nonnegative X. For positive λ ,

$$\Pr[|X - \mu| \ge \lambda \sigma] \le \frac{1}{\lambda^2}.$$

Theorem (Markov's Inequality)

For nonnegative X and positive a, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$.

Theorem (Chebyshev's Inequality)

Let μ and σ denote the mean and standard deviation of nonnegative X. For positive λ ,

$$\Pr[|X - \mu| \ge \lambda \sigma] \le \frac{1}{\lambda^2}.$$

Corollary

For nonnegative X,

$$\mathsf{Pr}[X=0] \leq rac{\mathsf{Var}[X]}{\mathbb{E}[X]^2} = rac{\mathbb{E}[X^2] - \mathbb{E}[X]^2}{\mathbb{E}[X]^2}.$$

The threshold for containing triangles is $p = \frac{1}{n}$.

æ

6/13

< ∃ >

The threshold for containing triangles is $p = \frac{1}{n}$.

• X = # of triangles

æ

The threshold for containing triangles is $p = \frac{1}{n}$.

• X = # of triangles

•
$$\mathbb{E}[X] = \binom{n}{3}p^{\binom{3}{2}} = O(n^3)p^3$$

æ

6/13

The threshold for containing triangles is $p = \frac{1}{n}$.

• X = # of triangles

•
$$\mathbb{E}[X] = \binom{n}{3}p^{\binom{3}{2}} = O(n^3)p^3$$

• $p \ll \frac{1}{n}$: Markov's Inequality

$$\Pr[X \ge 1] \le \mathbb{E}[X]/1 = O(n^3)p^3 \ll 1$$

æ

イロト 不得 トイヨト イヨト

The threshold for containing triangles is $p = \frac{1}{n}$.

• X = # of triangles

•
$$\mathbb{E}[X] = \binom{n}{3}p^{\binom{3}{2}} = O(n^3)p^3$$

• $p \ll \frac{1}{n}$: Markov's Inequality

$$\Pr[X \ge 1] \le \mathbb{E}[X]/1 = O(n^3)p^3 \ll 1$$

• $p \gg \frac{1}{n}$: $\mathbb{E}[X^2]$, expected number of pairs of triangles

æ

(日)

The threshold for containing triangles is $p = \frac{1}{n}$.

• X = # of triangles

•
$$\mathbb{E}[X] = \binom{n}{3}p^{\binom{3}{2}} = O(n^3)p^3$$

• $p \ll \frac{1}{n}$: Markov's Inequality

$$\Pr[X \ge 1] \le \mathbb{E}[X]/1 = O(n^3)p^3 \ll 1$$

p ≫ ¹/_n : E[X²], expected number of pairs of triangles
 4 cases: share 0,1,2,3 vertices

• 0 shared vertices: $O(n^6)p^6$

Image: A matrix

æ

• 0 shared vertices: $O(n^6)p^6$

• 1 shared vertex: $O(n^5)p^6$

- 《 戶司

э

• 0 shared vertices: $O(n^6)p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4)p^5$

• 0 shared vertices: $O(n^6)p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4)p^5$
- 3 shared vertices: $O(n^3)p^3$

- 0 shared vertices: $O(n^6)p^6$
- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4)p^5$
- 3 shared vertices: $O(n^3)p^3$

• 0 shared vertices: $O(n^6)p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4)p^5$
- 3 shared vertices: $O(n^3)p^3$

• $\Pr[X = 0] \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \ll 1$

The threshold for containing K_4 is $p = n^{-\frac{2}{3}}$.

< ∃⇒

æ

The threshold for containing K_4 is $p = n^{-\frac{2}{3}}$.

Theorem

The threshold for containing K_5 is $p = n^{-\frac{1}{2}}$.

- ∢ ∃ →

→ < ∃ →</p>

The threshold for containing K_4 is $p = n^{-\frac{2}{3}}$.

Theorem

The threshold for containing K_5 is $p = n^{-\frac{1}{2}}$.

Theorem

The threshold for containing the complete graph on r vertices (K_r) is $p = n^{-\frac{2}{r-1}}$.

herine	

The threshold for connectivity is
$$p = \frac{\log n}{n}$$
.

herine	

メロト メタト メヨト メヨト

The threshold for connectivity is $p = \frac{\log n}{n}$.

• $X_k = \#$ of components of order k

æ

9/13

The threshold for connectivity is $p = \frac{\log n}{n}$.

•
$$X_k = \#$$
 of components of order k
• $p \ll \frac{\log n}{n}$

イロト 不得 とうほとう ほんし

æ

The threshold for connectivity is $p = \frac{\log n}{n}$.

イロト イヨト イヨト

æ

The threshold for connectivity is $p = \frac{\log n}{n}$.

•
$$X_k = \#$$
 of components of order k

•
$$p \ll \frac{\log n}{n}$$

isolated vertices: $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \le \mathbb{E}[X_1]^2 + 1$

• Chebyshev's Inequality

・ 同 ト ・ ヨ ト ・ ヨ ト

The threshold for connectivity is $p = \frac{\log n}{n}$.

• Chebyshev's Inequality

•
$$p \gg \frac{\log n}{n}$$

Image: A matrix and A matrix

æ

The threshold for connectivity is $p = \frac{\log n}{n}$.

Chebyshev's Inequality

•
$$p \gg \frac{\log n}{n}$$

• $\mathbb{E}[X_k] \le {n \choose k} k^{k-2} p^{k-1} (1-p)^{k(n-k)}$

æ

The threshold for connectivity is $p = \frac{\log n}{n}$.

•
$$X_k = \#$$
 of components of order k
• $p \ll \frac{\log n}{n}$
• isolated vertices:
 $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \le \mathbb{E}[X_1]^2 + k$

- Chebyshev's Inequality
- $p \gg \frac{\log n}{n}$

•
$$\mathbb{E}[X_k] \leq \binom{n}{k} k^{k-2} p^{k-1} (1-p)^{k(n-k)}$$

• Markov's Inequality: $\sum_{k=1}^{\lfloor n/2 \rfloor} \mathbb{E}[X_k] \to 0$ suffices

1

æ

イロト イヨト イヨト -

The Galton-Watson Branching Process

• Consider an organism that reproduces by having a random number of children, X

The Galton-Watson Branching Process

- Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?

The Galton-Watson Branching Process

- \bullet Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?
 - if 𝔼[X] < 1, yes

The Galton-Watson Branching Process

- Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?
 - if $\mathbb{E}[X] < 1$, yes
 - if $\mathbb{E}[X] > 1$, possibly

The Galton-Watson Branching Process

- \bullet Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?
 - if 𝔼[X] < 1, yes
 if 𝔼[X] > 1, possibly

• introduced by Erdős and Rényi

æ

11/13

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process

11/13

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process
- small components: $O(\log n)$

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process
- small components: $O(\log n)$
- large components: O(n)

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process
- small components: $O(\log n)$
- large components: O(n)
- $p = \frac{c}{n}$:

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process
- small components: $O(\log n)$
- large components: O(n)
- p = c/n :
 c < 1 : many small components

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process
- small components: $O(\log n)$
- large components: O(n)
- $p = \frac{c}{n}$:
 - *c* < 1 : many small components
 - c > 1 : giant component and small components

11/13

The Giant Component

æ

The Giant Component

æ

Thanks for listening!

herine	

æ

・ロト ・四ト ・ヨト ・ヨト