Random Graphs

Catherine Li

Euler Circle

July 2021

K ロ ▶ K 倒 ▶

É

Definition

A random graph $G(n, p)$ is the probability space of graphs with *n* vertices, such that each edge has probability p of being in the graph. Alternatively, $G(n, m)$ is the probability space of graphs with *n* vertices and *m* edges, with each edge having equal probability of being chosen.

つへへ

Definition

A random graph $G(n, p)$ is the probability space of graphs with *n* vertices, such that each edge has probability p of being in the graph. Alternatively, $G(n, m)$ is the probability space of graphs with *n* vertices and *m* edges, with each edge having equal probability of being chosen.

$$
G\left(3,\frac{1}{2}\right):
$$

つへへ

Definition

A random graph $G(n, p)$ is the probability space of graphs with *n* vertices, such that each edge has probability p of being in the graph. Alternatively, $G(n, m)$ is the probability space of graphs with *n* vertices and *m* edges, with each edge having equal probability of being chosen.

Thresholds

Definition

A threshold $r(n)$ for a property A is a function such that, as $n \to \infty$,

$$
Pr[G(n,p) \in A] \rightarrow \begin{cases} 0 & \text{if } p \ll r(n), \\ 1 & \text{if } p \gg r(n), \end{cases}
$$

4 0 F

Thresholds

Definition

A threshold $r(n)$ for a property A is a function such that, as $n \to \infty$,

$$
Pr[G(n,p) \in A] \rightarrow \begin{cases} 0 & \text{if } p \ll r(n), \\ 1 & \text{if } p \gg r(n), \end{cases}
$$

- 1959: Erdős and Rényi published On random graphs, introducing the model $G(n, m)$
- 1959: Gilbert proposed $G(n, p)$ model
- 1969: Travers and Milgram studied the small world problem
- 1984: Béla Bollobás published Random Graphs
- 2006: Kahn-Kalai conjectured expectation threshold \approx phase transition
- 2022: Park and Pham proved the Kahn-Kalai conjecture

 Ω

Theorem (Markov's Inequality)

For nonnegative X and positive a, $Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ $\frac{a}{a}$.

4 **D F**

Theorem (Markov's Inequality)

For nonnegative X and positive a, $Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ $\frac{a}{a}$.

Theorem (Chebyshev's Inequality)

Let μ and σ denote the mean and standard deviation of nonnegative X. For positive λ ,

$$
\Pr[|X - \mu| \geq \lambda \sigma] \leq \frac{1}{\lambda^2}.
$$

 Ω

Theorem (Markov's Inequality)

For nonnegative X and positive a, $Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ $\frac{a}{a}$.

Theorem (Chebyshev's Inequality)

Let μ and σ denote the mean and standard deviation of nonnegative X. For positive λ ,

$$
\Pr[|X - \mu| \geq \lambda \sigma] \leq \frac{1}{\lambda^2}.
$$

Corollary

For nonnegative X ,

$$
\Pr[X=0] \leq \frac{\text{Var}[X]}{\mathbb{E}[X]^2} = \frac{\mathbb{E}[X^2] - \mathbb{E}[X]^2}{\mathbb{E}[X]^2}.
$$

The threshold for containing triangles is $p = \frac{1}{p}$ $\frac{1}{n}$.

 298

 $\leftarrow \equiv +$

э \sim

∢ □ ▶ ⊣ 何 ▶

The threshold for containing triangles is $p = \frac{1}{p}$ $\frac{1}{n}$.

 $\bullet X = \#$ of triangles

 298

医单子的

IN

(□) (母) (日

The threshold for containing triangles is $p = \frac{1}{p}$ $\frac{1}{n}$.

 $\bullet X = \#$ of triangles

•
$$
\mathbb{E}[X] = {n \choose 3} p^{3 \choose 2} = O(n^3) p^3
$$

 298

 $\mathbf{A} \times \mathbf{B}$

The threshold for containing triangles is $p = \frac{1}{p}$ $\frac{1}{n}$.

 $\bullet X = \#$ of triangles

•
$$
\mathbb{E}[X] = {n \choose 3} p^{3 \choose 2} = O(n^3) p^3
$$

 $\rho \ll \frac{1}{n}$: Markov's Inequality

$$
\Pr[X \geq 1] \leq \mathbb{E}[X]/1 = O(n^3) p^3 \ll 1
$$

4 0 F

 298

不重 的人

The threshold for containing triangles is $p = \frac{1}{p}$ $\frac{1}{n}$.

 $\bullet X = \#$ of triangles

•
$$
\mathbb{E}[X] = {n \choose 3} p^{3 \choose 2} = O(n^3) p^3
$$

 $\rho \ll \frac{1}{n}$: Markov's Inequality

$$
\Pr[X \geq 1] \leq \mathbb{E}[X]/1 = O(n^3)p^3 \ll 1
$$

 $\rho \gg \frac{1}{n}$: $\mathbb{E}[X^2],$ expected number of pairs of triangles

4 **D F**

造

 QQQ

The threshold for containing triangles is $p = \frac{1}{p}$ $\frac{1}{n}$.

 $\bullet X = \#$ of triangles

•
$$
\mathbb{E}[X] = {n \choose 3} p^{3 \choose 2} = O(n^3) p^3
$$

 $\rho \ll \frac{1}{n}$: Markov's Inequality

$$
\Pr[X \geq 1] \leq \mathbb{E}[X]/1 = O(n^3)p^3 \ll 1
$$

\n- $$
p \gg \frac{1}{n}
$$
: $\mathbb{E}[X^2]$, expected number of pairs of triangles
\n- 4 cases: share 0,1,2,3 vertices
\n

4 0 F

重

 0 shared vertices: $O(n^6) p^6$

Э× 重

∢ □ ▶ ⊣ 倒 ▶

 0 shared vertices: $O(n^6) p^6$

1 shared vertex: $O(n^5)p^6$

4 0 F

э

 0 shared vertices: $O(n^6) p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4) p^5$

4 **D F**

 0 shared vertices: $O(n^6) p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4) p^5$
- 3 shared vertices: $O(n^3)p^3$

4 0 8

 0 shared vertices: $O(n^6) p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4) p^5$
- 3 shared vertices: $O(n^3)p^3$

 0 shared vertices: $O(n^6) p^6$

- 1 shared vertex: $O(n^5)p^6$
- 2 shared vertices: $O(n^4) p^5$
- 3 shared vertices: $O(n^3)p^3$

$$
\begin{aligned} \text{Var}[X] &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ &\sim O(n^6)p^6 + O(n^5)p^6 + O(n^4)p^5 + O(n^3)p^3 - O(n^6)p^6 \\ &= O(n^6)p^6 \left(\frac{1}{n} + \frac{1}{n^2p} + \frac{1}{n^3p^3} \right) \end{aligned}
$$

 $\mathsf{Pr}[X=0]\leq \frac{\mathsf{Var}[X]}{\mathbb{E}[X]^2}\ll 1$

 Ω

The threshold for containing K_4 is $p = n^{-\frac{2}{3}}$.

 \Rightarrow

4 ロ ▶ 4 冊

The threshold for containing K_4 is $p = n^{-\frac{2}{3}}$.

Theorem

The threshold for containing K_5 is $p = n^{-\frac{1}{2}}$.

4 **D F**

The threshold for containing K_4 is $p = n^{-\frac{2}{3}}$.

Theorem

The threshold for containing K_5 is $p = n^{-\frac{1}{2}}$.

Theorem

The threshold for containing the complete graph on r vertices (K_r) is $p = n^{-\frac{2}{r-1}}$.

. . .

 QQQ

The threshold for connectivity is
$$
p = \frac{\log n}{n}
$$
.

 2990

イロメ イ部メ イヨメ イヨメン

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

• $X_k = #$ of components of order k

 298

メロトメ 倒 トメ ヨ トメ ヨ トー

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

\n- $$
X_k = \# \text{ of components of order } k
$$
\n- $p \ll \frac{\log n}{n}$
\n

メロトメ 倒 トメ 君 トメ 君 トー

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

\n- $$
X_k = \# \text{ of components of order } k
$$
\n- $p \ll \frac{\log n}{n}$
\n- isolated vertices: $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \leq \mathbb{E}[X_1]^2 + 1$
\n

メロトメ 倒 トメ 君 トメ 君 トー

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

\n- $$
X_k = \#
$$
 of components of order k
\n- $p \ll \frac{\log n}{n}$
\n- isolated vertices: $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \leq \mathbb{E}[X_1]^2 + 1$
\n

• Chebyshev's Inequality

B.K.

э \sim

∢ ロ ▶ ィ 何 ▶ ィ

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

\n- \n
$$
X_k = \# \text{ of components of order } k
$$
\n
\n- \n $p \ll \frac{\log n}{n}$ \n
\n- \n $\text{isolated vertices:}$ \n
\n- \n $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \leq \mathbb{E}[X_1]^2 + 1$ \n
\n

Chebyshev's Inequality

$$
\bullet \, p \gg \frac{\log n}{n}
$$

医单子的

 \rightarrow

 \bullet

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

\n- \n
$$
X_k = \# \text{ of components of order } k
$$
\n
\n- \n $p \ll \frac{\log n}{n}$ \n
\n- \n $\text{isolated vertices:}$ \n
\n- \n $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \leq \mathbb{E}[X_1]^2 + 1$ \n
\n- \n $\text{Chebyshev's Inequality}$ \n
\n

$$
p \gg \frac{\log n}{n}
$$

• $\mathbb{E}[X_k] \leq {n \choose k} k^{k-2} p^{k-1} (1-p)^{k(n-k)}$

メロトメ 倒 トメ ヨ トメ ヨ トー

The threshold for connectivity is $p = \frac{\log n}{n}$ $\frac{g n}{n}$.

\n- \n
$$
X_k = \# \text{ of components of order } k
$$
\n
\n- \n $p \ll \frac{\log n}{n}$ \n
\n- \n $\text{isolated vertices:}$ \n
\n- \n $\mathbb{E}[X_1] = n(1-p)^{n-1}, \mathbb{E}[X_1^2] \leq \mathbb{E}[X_1]^2 + 1$ \n
\n- \n $\text{Chebyshev's Inequality}$ \n
\n

$$
\bullet \ \ p \gg \frac{\log n}{n}
$$

•
$$
\mathbb{E}[X_k] \leq {n \choose k} k^{k-2} p^{k-1} (1-p)^{k(n-k)}
$$

Markov's Inequality: $\sum_{k=1}^{\lfloor n/2 \rfloor} \mathbb{E}[X_k] \rightarrow 0$ suffices

 2980

イロト 不優 トイミト イミト 一番

Consider an organism that reproduces by having a random number of children, X

4 **D F**

- Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?

4 0 8

 Ω

- Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?

• if $\mathbb{E}[X] < 1$, yes

4 0 8

- Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?
	- if $\mathbb{E}[X] < 1$, yes
	- if $\mathbb{E}[X] > 1$, possibly

4 0 8

- Consider an organism that reproduces by having a random number of children, X
- Does the population eventually go extinct?

4 0 8

• introduced by Erdős and Rényi

в

4 ロト 4 倒

 \rightarrow

É

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process

4 **D F**

- introduced by Erdős and Rényi
- **•** traversing components: modeled by the branching process
- \bullet small components: $O(\log n)$

4 **D F**

- introduced by Erdős and Rényi
- traversing components: modeled by the branching process
- \bullet small components: $O(\log n)$
- large components: $O(n)$

4 0 8

 Ω

- introduced by Erdős and Rényi
- **•** traversing components: modeled by the branching process
- \bullet small components: $O(\log n)$
- large components: $O(n)$
- $p = \frac{c}{n}$ $\frac{c}{n}$:

4 0 8

- introduced by Erdős and Rényi
- **•** traversing components: modeled by the branching process
- \bullet small components: $O(\log n)$
- large components: $O(n)$
- $p = \frac{c}{n}$ $\frac{c}{n}$: \bullet $c < 1$: many small components

4 0 8

- introduced by Erdős and Rényi
- **•** traversing components: modeled by the branching process
- small components: $O(\log n)$
- large components: $O(n)$
- $p = \frac{c}{n}$ $\frac{c}{n}$: \bullet $c < 1$: many small components
	- \bullet $c > 1$: giant component and small components

The Giant Component

 \leftarrow \Box

∢母 \rightarrow Þ

重

The Giant Component

4 0 8

SILLER

É

Thanks for listening!

 \rightarrow \equiv \rightarrow D.

K ロ ▶ K 母 ▶ K

Þ

重