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Abstract. We define two models of random graphs, the latter of which we use throughout
the paper. Then we examine threshold functions, which are proven using the first and second
moment methods. We also define monotone graph properties and prove the existence of
thresholds for these properties. We then move on to a series of specific graph properties and
their thresholds: the existence of cycles and cliques, connectivity, and the emergence of the
giant component. While exploring components, we use a branching process and approximate
our model with probability distributions. Finally, we discuss the generalization to random
simplicial complexes, which include higher dimensional objects beyond vertices and edges.

1. Introduction

The study of the field of random graphs began with Paul Erdős and Alfréd Rényi’s 1959
paper On Random Graphs and their series of papers on the random graph in later years. In
these texts, the authors defined the concept of random graphs and identified the phenomenon
of thresholds, where the probability of having a certain graph property jumps from 0 to 1
below and above a certain value.

Definition 1.1. Erdős and Rényi’s model denotes G(n,m) as the probability space of graphs

with n vertices and m edges, such that each of
((n2)

m

)
possible graphs has an equal probability,((n2)

m

)−1

, of being chosen.

Definition 1.2. Another model, introduced by Edgar Gilbert, which we will use throughout
this paper, denotes G(n, p) as the probability space of graphs with n vertices such that each
of the

(
n
2

)
possible edges has probability p of being in a graph.

These two models can be related by the result that, if a graph in G(n, p) has m edges, it
is equally likely to be any graph in G(n,m).

One way to study these graphs is the evolution of random graphs, which characterizes the
stages of the graph G(n, p) as we increase p : first, cycles arise, then the unique giant com-
ponent emerges (accompanied by small components), followed by connectivity, and roughly
equal degrees for all vertices.

2. Thresholds

As p increases, certain properties of the graphs often appear. For example, if edges are
more likely to be in the graph, it is much more likely that the graph will be connected or
contain a triangle. We define threshold functions, which describe when properties of a graph
are likely or unlikely to appear as n increases to infinity.
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Definition 2.1. A function r(n) is a threshold function for a property A of the graph if, as
n → ∞,

Pr[G(n, p) ∈ A] →

{
0 if p ≪ r(n),

1 if p ≫ r(n),

where Pr[G(n, p) ∈ A] denotes the probability that a graph in G(n, p) satisfies A.

Note: We say that p ≪ r(n) or p = o(r(n)) if

lim
n→∞

p

r(n)
= 0,

and p ≫ r(n) if

lim
n→∞

p

r(n)
= ∞.

Interestingly, the interval of p during which the probability of having a certain property
jumps from 0 to 1 can be quite small, creating the following relationship between p and
Pr[G(n, p) ∈ A] :
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To prove the validity of thresholds, we use two methods: the first and second moment
methods. Note that the kth moment of X is E

[
Xk
]
.

When p ≪ r(n), we generally use the first moment method with Markov’s Inequality,
which involves E[X], the first moment of X.

Theorem 2.2 (Markov’s Inequality). For nonnegative X and positive a,

Pr[X ≥ a] ≤ E[X]

a
.
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Proof. We have

E[X] =
∑
i

iPr[X = i]

≥
∑
i≥a

iPr[X = i]

≥
∑
i≥a

aPr[X = i]

= aPr[X ≥ a].

Rearranging, we have

Pr[X ≥ a] ≤ E[X]

a
,

as desired. ■

To consider what happens when p ≫ r(n), we often use the second moment method with
Chebyshev’s Inequality, of which a special case involves E[X2], the second moment of X.
This represents the number of pairs of the structures counted by X.

Theorem 2.3 (Chebyshev’s Inequality). Let µ and σ denote the mean (expected value) and
standard deviation of a nonnegative variable X. For positive λ,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
.

Proof. An equivalent statement is Pr[(|X−µ|)2 ≥ (λσ)2] ≤ 1
λ2 . Applying Markov’s inequality,

we have

Pr[(|X − µ|)2 ≥ (λσ)2] ≤ E[|X − µ|2]
λ2σ2

=
σ2

λ2σ2

=
1

λ2
,

and we are done. ■

Corollary 2.4. For nonnegative X,

Pr[X = 0] ≤ Var[X]

E[X]2
,

where

Var[X] = E[(X − E[X])2]

= E[X2 − 2XE[X] + E[X]2]

= E[X2]− 2E[X]2 + E[X]2

= E[X2]− E[X]2.

By definition, Var[X] is also equal to σ2.
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Proof. Plugging in λ = µ/σ to Chebyshev’s Inequality, we have

Pr[X = 0] ≤ Pr[|X − µ| ≥ λσ = µ]

≤ 1

λ2

=
σ2

µ2

=
Var[X]

E[X]2
.

■

This corollary is the form of Chebyshev’s Inequality that we will use in later proofs.

Now, we consider a specific type of graph property: monotone graph properties.

Definition 2.5. A graph property A is monotone increasing if, given a graph G that satisfies
A, adding any edge to G maintains property A. In other words, adding edges cannot violate
the property. One example of a monotone increasing graph property is connectivity: if a
graph is already connected, adding edges cannot “unconnect” it.

Definition 2.6. Similarly, a monotone decreasing graph property A is one such that, given
a graph G that satisfies A, removing any edge from G maintains the property.

We say that any property that is either monotone increasing or monotone decreasing is
monotone.

Theorem 2.7. Consider a monotone increasing graph property A and probabilities p1, p2. If
p1 ≤ p2, then

Pr[G(n, p1) ∈ A] ≤ Pr[G(n, p2) ∈ A].

Proof. Let p0 be the nonnegative value such that

p2 = p1 + p0(1− p1).

We take the graphs G0 ∈ G(n, p0) and G1 ∈ G(n, p1), randomly and independently chosen.
Let

G2 = G0 ∪G1.

Each edge in G2 is put into the graph with probability

p0 + p1 − p0p1 = p2,

by the Principle of Inclusion-Exclusion, because the edge must be in at least one of G0 and
G1. Thus

G2 ∈ G(n, p2).

Since G1 ∈ A implies G2 ∈ A (because G2 is G1 with a nonzero number of added edges), we
have

Pr[G(n, p1) ∈ A] ≤ Pr[G(n, p2) ∈ A],

as claimed. ■

Theorem 2.8. Every monotone graph property has a threshold, given that for large enough
n, the property is neither always satisfied nor never satisfied (such a property is called non-
trivial by Béla Bollobás).
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Proof. Let A be the monotone graph property. Without loss of generality, we assume that
A is monotone increasing. We define the function p(ε) such that, for 0 ≤ ε ≤ 1,

Pr[G(n, p(ε)) ∈ A] = ε.

This is like an inverse function of Pr[G(n, p) ∈ A] that returns the probability p(ε) we need
to have probability ε of satisfying property A. We know that this value exists for all such ε
because

Pr[G(n, p) ∈ A] =
∑
G∈A

p|E(G)|(1− p)n−|E(G)|,

where E(G) is the set of edges of G, since we sum the probabilities of getting each graph
that satisfies A in G(n, p).

Since the above probability is a polynomial in p, with value 0 when p = 0 and 1 when
p = 1, all possible values of Pr[G(n, p) ∈ A] between 0 and 1 are realized, by the Intermediate
Value Theorem.

Let p0 represent p
(
1
2

)
. We claim that p0 is a threshold for property A, meaning that as

n → ∞,

Pr[G(n, p) ∈ A] →

{
0 if p ≪ p0,

1 if p ≫ p0.

Consider k independent copies G1, G2, . . . , Gk of G(n, p). Taking the union of these k
copied graphs, there is 1− (1− p)k probability that an edge is in at least one of the k copies.
Thus, symbolically we write

G1 ∪G2 ∪ · · · ∪Gk ≡ G(n, 1− (1− p)k).

By the binomial theorem,

1− (1− p)k ≤ kp,

so if any Gi satisfies property A, so does G(n, kp). The contrapositive of this statement gives
us that, if G(n, kp) does not satisfy A, then no Gi does. Equivalently, by Theorem 2.7, we
write

(2.1) Pr[G(n, kp) /∈ A] ≤ (Pr[G(n, p) /∈ A])k .

Now consider a function ω(n) ≪ log log n such that as n → ∞, ω → ∞ as well. As
n → ∞, we have p0

ω(n)
→ 0 and p0ω(n) → ∞, so

p0
ω(n)

≪ p0 and p0f(n) ≫ p0.

Plugging in k = ω and p = p0
ω

into inequality 2.1, we have, as n → ∞,

Pr [G (n, p0) /∈ A] =
1

2

≤
(
Pr
[
G
(
n,

p0
ω

)
/∈ A
])ω

.
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Rearranging, we get

Pr
[
G
(
n,

p0
ω

)
/∈ A
]
≥
(
1

2

)1/ω

= 1− o(1).

This means Pr[G(n, p0/ω) ∈ A] = 1− Pr[G(n, p0/ω) /∈ A] → 0, as claimed.

Similarly, plugging in k = ω and p = p0 into inequality 2.1, we have, as n → ∞,

Pr[G(n, ωp0) /∈ A] ≤ (Pr[G(n, p0) /∈ A])ω

=

(
1

2

)ω

= o(1).

Thus Pr[G(n, ωp0) ∈ A] → 1, as desired. ■

3. Probability Distributions

Before we find the thresholds for specific graph properties, we introduce several probability
distributions that can model the number of edges in random graphs.

Definition 3.1. A binomial distribution Bin(n, p) is the discrete probability distribution
over 0, 1, . . . , n such that

Pr[x successes] = B(x;n, p) =

(
n

x

)
px(1− p)n−x.

The binomial distribution is used to model the number of successes in n trials, where each
trial has probability p of success and thus probability 1− p of failure.

Definition 3.2. A Poisson distribution Pois(λ) is the discrete probability distribution such
that

Pr[x occurrences] = P (x;n, λ) =
λx

x!
e−λ,

where λ = E[x]. This distribution models the number of times x that a certain event occurs
over a time interval of length n, given that the event has a mean rate of λ.

We note that the Poisson distribution is the limiting case of the binomial distribution.
Letting λ = np, we have

B(x;n, p) =
n!

x!(n− x)!
· px(1− p)n−x

=
λx

x!
· n!

(n− x)! · nx

(
1− λ

n

)n(
1− λ

n

)−x

.

Taking limits as n → ∞, we have

lim
n→∞

n!

(n− x)! · nx
= lim

n→∞

n(n− 1) . . . (n− x+ 1)

nx
= 1,
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lim
n→∞

(
1− λ

n

)n

= e−λ,

lim
n→∞

(
1− λ

n

)−x

= 1.

Therefore,

lim
n→∞

B(x;n, p) =
λx

x!
e−λ = P (x;n, λ) = P (x;n− c, λ)

for any c ≪ n.

4. Cycles

The first property we will look at is the existence of cycles; let Ck denote the cycle of k
vertices that form a loop. We will see that the threshold for containing cycles (with any
number of vertices ≥ 3) is p = 1

n
.

Theorem 4.1. As n → ∞,

Pr[G(n, p) ⊇ Ck≥3] →

{
0 if p ≪ 1

n
,

1 if p ≫ 1
n
.

Proof. Let X represent the number of cycles in G(n, p). We first find E[X]. For each cycle

size k ≥ 3, we have
(
n
k

)
ways to choose the k vertices and k!

2k
= (k−1)!

2
ways to arrange them

(rotating a cycle or changing its direction keeps it the same). There is also pk probability
that the k edges forming the loop are all present. Thus, by linearity of expectation,

E[X] =
∑
k≥3

E[cycles of size k]

=
∑
k≥3

(
n

k

)
k!

2k
pk

=
∑
k≥3

n(n− 1) . . . (n− k + 1)

k!
· k!
2k

pk

≤
∑
k≥3

nkpk.

By the geometric series formula, ∑
k≥3

nkpk =
n3p3

1− np
.

Next, Markov’s Inequality gives us

Pr[X ≥ 1] ≤ E[X] ≤ n3p3

1− np
.

Since p ≪ 1
n
, the numerator n3p3 = o(1) and the denominator 1− np = 1− o(1). Therefore,

the probability that we have at least one cycle when p ≪ 1
n
approaches 0 as n → ∞.
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Next, we will show that Pr[G(n, p) ⊇ Ck≥3] → 1 as n → ∞. In particular, if this holds
for p = 3

n
, then since having cycles is a monotone increasing property, this will hold for any

p ≥ 3
n
, and thus for all p ≫ 1

n
.

Let E(G) denote the set of edges in G(n, p), and let S denote |E(G)|, the number of edges.
It is well-known that a graph with n vertices and at least n edges must have at least one
cycle (this can be shown by proof by contradiction and induction). Since each of

(
n
2

)
edges

has probability p of being in the graph, S follows the binomial distribution Bin
((

n
2

)
, p
)
. This

means

E[S] =
(
n

2

)
p,

Var[S] =

(
n

2

)
p(1− p).

Letting p = 3
n
and taking n → ∞, we get

E[S] =
n(n− 1)

2
· 3
n
∼ 3n

2

Var[S] =

(
n

2

)
· 3
n
·
(
1− 3

n

)
∼ n2

2
· 3
n
∼ 3n

2
.

Since we want to prove that with high probability S ≥ n, it suffices to show that with
high probability |S − E[S]| <

∣∣n− 3n
2

∣∣ = n
2
. Taking the complement, we plug in λσ = n

2
to

Chebyshev’s Inequality, giving us

Pr
[
|S − E[S]| ≥ n

2

]
≤ σ2(

n
2

)2
=

Var[S](
n
2

)2
∼ 3n/2

n2/4

=
6

n
,

which tends to 0 when n tends to ∞. Therefore, Pr
[
|S − E[S]| < n

2

]
→ 1, so we have at

least n edges and at least one cycle, with high probability.
■

5. Cliques

Another specific property of graphs that we will examine is containing cliques. Let Kr

denote the r-clique, which is a graph on r vertices, all of which are connected to each other
with a total of

(
r
2

)
edges. This is also called the complete graph on r vertices.

A well-known result shows that the threshold for containing a triangle (3-clique) is 1
n
. We

start with finding the threshold for containing K4, then generalize to Kr for all r ≥ 3.
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Theorem 5.1. Let K4 be the complete graph on 4 vertices. As n → ∞,

Pr[G(n, p) ⊇ K4] →

{
0 if p ≪ n− 2

3 ,

1 if p ≫ n− 2
3 .

Proof. Let X be the number of K4 subgraphs in G(n, p). By linearity of expectation,

E[X] =

(
n

4

)
p6 = O(n4)p6,

since there are
(
n
4

)
sets of 4 vertices and p6 probability that we have all

(
4
2

)
= 6 edges.

If p ≪ n− 2
3 , we have

E[X] = O(n4)p6 ≪ 1.

By Markov’s Inequality,

Pr[G(n, p) ⊇ K4] = Pr[X ≥ 1] ≤ E[X] = o(1),

so as n → ∞,Pr[G(n, p) ⊇ K4] → 0, meaning G(n, p) very likely does not contain K4.

Next, suppose p ≫ n− 2
3 . Chebyshev’s Inequality tells us that

Pr[X = 0] ≤ Var[X]

E[X]2
,

so it suffices to show that Var[X] = E[X2]− E[X]2 ≪ E[X]2.

We will find E[X2], which represents the number of pairs of K4 subgraphs in G(n, p). We
have 5 cases: the two 4-cliques can share 0, 1, 2, 3, or 4 vertices.

Case 1: 0 shared vertices
If two 4-cliques share no vertices, there are

(
n
4

)(
n−4
4

)
ways to choose the eight vertices, and

there are
(
4
2

)
· 2 = 12 edges total, each of which appears with probability p. Thus this case

contributes an expected O(n8)p12 pairs of 4-cliques.

Case 2: 1 shared vertex
There are

(
n
4

)
ways to choose the vertices of the first K4, and 4 ·

(
n−4
3

)
ways to choose the

shared vertex and 3 other vertices for the second K4. We still have 12 total edges, so this
case contributes an expected O(n7)p12 pairs.

Case 3: 2 shared vertices
The two 4-cliques have 6 vertices and 11 edges total, so similarly to the previous cases, we
have O(n6)p11 pairs in this case.
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Case 4: 3 shared vertices
If the 4-cliques share 3 vertices (and 3 edges), they have 5 vertices and 9 edges total, so this
case gives us O(n5)p9 pairs.

Case 5: 4 shared vertices
Finally, if the 4-cliques share all 4 of their vertices, they are the exact same graphs, and we
have O(n4)p6 pairs of K4 in this case.

Adding up the contributions from each case, we have

E
[
X2
]
= O(n8)p12 +O(n7)p12 +O(n6)p11 +O(n5)p9 +O(n4)p6,

Var[X] = E
[
X2
]
− E[X]2 = O(n7)p12 +O(n6)p11 +O(n5)p9 +O(n4)p6

= O(n8p12)

(
1

n
+

1

n2p
+

1

n3p3
+

1

n4p6

)
.

Since p ≫ n− 2
3 , each term of

(
1
n
+ 1

n2p
+ 1

n3p3
+ 1

n4p6

)
is o(1), so Var[X] = E[X]2o(1).

Therefore, Var[X] ≪ E[X]2, so G(n, p) contains K4 with high probability, as desired.
■

Now, we tackle the general case. The threshold for triangles is n−1, and the threshold for

K4 is n− 2
3 . We can reasonably guess that the threshold for containing Kr is n

− 2
r−1 , which is

in fact correct.

Theorem 5.2. Let Kr be the complete graph on r vertices, such that r ≥ 3. As n → ∞,

Pr[G(n, p) ⊇ Kr] →

{
0 if p ≪ n− 2

r−1 ,

1 if p ≫ n− 2
r−1 .

Proof. Again, let X be the number of subgraphs Kr in a graph in G(n, p). Linearity of
expectation gives us

E[X] =

(
n

r

)
p(

r
2) = O(nr)p(

r
2).

If p ≪ n− 2
r−1 , we have

E[X] = O(nr)p(
r
2) ≪ nrn

−2
r−1

· r(r−1)
2 = 1.

By Markov’s Inequality,

Pr[G(n, p) ⊇ Kr] = Pr[X ≥ 1] ≤ E[X] = o(1),
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so as n → ∞,Pr[G(n, p) ⊇ Kr] → 0.

Next, suppose p ≫ n− 2
r−1 . Since

Pr[X = 0] ≤ Var[X]

E[X]2
,

it suffices to show that Var[X] = E[X2]− E[X]2 ≪ E[X]2.

We find E[X2], which represents the number of pairs of Kr subgraphs in G(n, p). We have
r + 1 cases: the two r-cliques share 0, 1, 2, . . . , r − 1, or r vertices.

Consider the case where the two r-cliques share k vertices. Between the two cliques, there

are 2r−k vertices and 2
(
r
2

)
−
(
k
2

)
edges. Thus this case contributes O(n2r−k)p2(

r
2)−(

k
2) to E[X2].

Summing for k = 0 to r, we have

E[X2] =
r∑

k=0

O(n2r−k)p2(
r
2)−(

k
2)

= O(n2r)p2(
r
2) +

r∑
k=1

O(n2r−k)p2(
r
2)−(

k
2),

Var[X] = E[X2]− E[X]2

= O(n2r)p2(
r
2) +

r∑
k=1

O(n2r−k)p2(
r
2)−(

k
2) −

(
O(nr)p(

r
2)
)2

= O(n2r)p2(
r
2)

(
r∑

k=1

1

nkp(
k
2)

)
.

Since p ≫ n− 2
r−1 ≥ −2

k−1
for each 1 ≤ k ≤ r, each term

1

nkp(
k
2)

≪ 1

nkn− 2
k−1

·(k2)
= 1.

Thus

Var[X] = O
(
n2rp2(

r
2)
)
o(1) = E[X]2o(1),

so Var[X] ≪ E[X]2, as needed.
■

6. Connectivity

We now examine another property: connectivity, or connectedness.

A graph is connected if and only if each vertex can be reached from every other vertex by
traveling on a series of edges—the graph is a single connected component.

We define C to be the property of connectedness. The following theorem on connectivity
is from Erdos and Renyi.
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Theorem 6.1. Consider a function ω(n) ≥ 0 such that ω(n) ≤ log log n and as n → ∞, the
function ω(n) also tends to ∞. Then, as n → ∞,

Pr[G(n, p) ∈ C] →

{
0 if p = logn−ω(n)

n
,

1 if p = logn+ω(n)
n

.

In other words, logn
n

is a threshold for connectivity.

Proof. First, let p = logn−ω(n)
n

= logn
n

(1− o(1)). We claim that G(n, p) is not connected with
high probability; it suffices to prove that there is at least one isolated vertex, because then
the graph cannot be connected. Let X1 be the number of isolated vertices (components of
order 1, where order is the number of vertices). We have

E[X1] = n(1− p)n−1,

since each of the n vertices has (1 − p)n−1 probability of not being connected to any of the
n− 1 other vertices.

We note that p → 0 for sufficiently large n, so

E[X1] = n(1− p)n−1

≥ n(1− p)n

≥ ne(−p−p2)n

= ne− logne−ω(n)e−p2n

= e−ω(n)e−p2n → ∞,

because p2n = o(1). This means E[X1] → ∞.

We will use the second moment method. With Chebyshev’s Inequality, we have

Pr[X1 = 0] ≤ Var[X1]

E[X]2
,

so it suffices to show that Var[X1] = E[X2
1 ]− E[X1]

2 ≪ E[X1]
2.

To find E[X2
1 ], we use E[X1(X1 − 1)], which represents the number of ordered pairs of

isolated vertices in our graph. There are n(n− 1) ways to choose an ordered pair of vertices,
and probability (1−p)2(n−2)+1 that there are no edges between the isolated vertices themselves
or between an isolated vertex and the rest of the graph. This gives us

E[X1(X1 − 1)] = n(n− 1)(1− p)2(n−2)+1

≤ n2(1− p)2n−2

1− p

=
E[X1]

2

1− p

≤ E[X1]
2 + 1,

since p ∼ logn
n

→ 0 as n → ∞.
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Thus

Var[X1] = E
[
X2

1

]
− E[X1]

2

= E[X1(X1 − 1)] + E[X1]− E[X1]
2

≤ E[X1]
2 + 1 + E[X1]− E[X1]

2

= E[X1] + 1.

Since E[X1] → ∞, we have

Var[X1] ≤ E[X1] + 1 ≪ E[X1]
2,

as desired.

Next, we claim that if p = logn+ω(n)
n

= logn
n

(1 + o(1)), G(n, p) is connected with high
probability.

Again, we can characterize E[X1],

E[X1] = n(1− p)n−1

≤ ne−pn

= ne− logne−ω(n)

= e−ω(n) → 0,

as n → ∞. Thus E[X1] = o(1).

We let Xk denote the number of connected components that have k vertices (order k).
Then our graph is disconnected if at least one of X1, X2, . . . , X⌊n/2⌋ is greater than 0.

We find E[Xk]. Each connected component has a spanning tree, and there are kk−2 ways
to label a tree on k vertices. Thus, with Stirling’s formula about factorials,

E[Xk] ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k)

≤
(ne
k

)k
kk−2pk−1(1− p)k(n−k)

≤ nkekpk−1e−pk(n−k),

where the last step follows from 1− p ≤ e−p.
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It suffices to show that Pr[G(n, p) /∈ C] → 0 as n → ∞. We have

Pr[G(n, p) /∈ C] =

⌊n/2⌋⋃
k=1

Pr[Xk ≥ 1]

≤
⌊n/2⌋∑
k=1

Pr[Xk ≥ 1]

≤
⌊n/2⌋∑
k=1

E[Xk],

by Markov’s Inequality. Since E[X1] = o(1), we only need to show that
∑⌊n/2⌋

k=2 E[Xk] = o(1).

We split the sum into two parts: k ≤ log log n and k > log log n.

First we consider k ≤ log log n. Since logn
n

< p < 2 logn
n

,

E[Xk] ≤ nkekpk−1e−pk(n−k)

≤ nkek
(
2 log n

n

)k−1

e−k lognepk
2

.

We know pk2 ≪ 1 because k ≪ log log n, so epk
2
< e. Thus, we bound our expression

nkek
(
2 log n

n

)k−1

e−k lognepk
2 ≤ e2

(
2e log n

n

)k−1

.

Using the geometric series formula, we have

⌊log logn⌋∑
k=2

E[Xk] ≤ e2
∞∑
k=2

(
2e log n

n

)k−1

= e2
2e logn

n

1− 2e logn
n

= o(1),

as desired.

For the second part of the summation, we take log log n < k ≤ n
2
. This means n− k ≥ n

2
.

We have

E[Xk] ≤ nkekpk−1e−pk(n−k)

≤ nkek
(
2 log n

n

)k−1

e−pkn/2

≤ ne(2e log n)k−1e−
logn
n

· kn
2

= ne(2e log n)k−1n− k
2

= n1/2e
(
2en−1/2 log n

)k−1
.
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Summing over log log n < k ≤ n
2
and using the geometric series formula, we get

⌊n/2⌋∑
k=⌊log logn⌋+1

E[Xk] ≤ n1/2e

∞∑
k=⌊log logn⌋

(
2en−1/2 log n

)k
= n1/2e ·

(
2en−1/2 log n

)⌊log logn⌋
1− 2en−1/2 log n

.

Since log n ≪ n1/2, the above expression is o(1). Therefore, adding the two parts of the
summation gives

⌊n/2⌋∑
k=1

E[Xk] = o(1),

so when p = logn+ω(n)
n

, G(n, p ∈ A) with high probability, and we are done.
■

7. Branching Processes and the Giant Component

An important and surprising discovery that Erdos and Renyi made about the components
of a graph is that for small p, graphs generally have many small components, each with order
O(log n). On the other hand, for larger p, a “giant component” emerges with order greater
than n2/3, along with small components of order O(log n).

We can examine the emergence of different components by a breadth-first traversal similar
to the Galton-Watson branching process.

Now that we have defined some key probability distributions, we turn to the Galton-
Watson branching process, which simply models the growth of a population with a tree. We
start with a root node, expand to the root node’s children, then to the children’s children,
and so on.

Let X be a random variable with some fixed probability distribution on the natural num-
bers 0, 1, 2 . . . . We consider one organism (the 0th generation) that reproduces by dividing
into a random number X of children, which make up the 1st generation. Each of the first-
generation children then reproduces a random number of its own children, according to the
distribution of X, to make the second generation, and so on.

We define Zn to be the number of organisms in the nth generation, and let ξi,j denote the
number of children of the jth organism in the ith generation. By definition, Z0 = 1. Also,
we have the recursive formula

Zn+1 =
Zn∑
j=1

ξn,j,

because the number of organisms in the (n + 1)th generation is the sum of the number of
children of the organisms in the nth generation.

Consider the following example:
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0,1

1,1 1,2 1,3

2,1 2,2 2,3

We have labeled a node (organism) “i, j” if it is the jth organism of the ith generation.
Then in this example,

Z0 = 1, Z1 = 3, Z2 = 3.

Also,

ξ0,1 = 3,

ξ1,1 = 2,

ξ1,3 = 1,

ξ1,2 = ξ2,1 = ξ2,2 = ξ2,3 = 0.

Thus, we confirm our recursive formula to get

Z2 =

Z1∑
j=1

ξ1,j = 2 + 0 + 1 = 3,

as expected.

Now that we are comfortable with the structure of our branching process, we consider the
question of whether the population of organisms becomes extinct at some point, depending
on the distribution of X.

Lemma 7.1. Suppose µ = E[ξi,j] < 1. Then the population becomes extinct. Equivalently,

lim
n→∞

Zn = 0.

Proof. We know that

E[Zn+1] = E

[
Zn∑
j=1

ξn,j

]

=
Zn∑
j=1

E[ξn,j]

=
Zn∑
j=1

µ

= µZn.

Since Z0 = 1 and Zn+1 = µZn, we have

Zn = µn.



RANDOM GRAPHS AND SIMPLICIAL COMPLEXES 17

Because µ < 1, we get

lim
n→∞

Zn = lim
n→∞

µn = 0,

as desired. ■

Next, if µ > 1, we note that

lim
n→∞

Zn = lim
n→∞

µn → ∞,

but this does not guarantee that the population never dies out, since there is still a prob-
ability that the organisms stop reproducing. Instead, we have a fixed nonzero probability
that the organisms keep reproducing forever.

Lemma 7.2. Suppose X, the random variable for an organism’s number of children, follows
the distribution Pois(λ). We have λ = E[ξi,j] > 1. Then the organism population becomes
extinct with probability q, where q is the smallest nonnegative solution of q = eλ(q−1).

Proof. We consider a generating function f(t) = E[tX ], where X is the random variable for
the number of children each organism will have.

We are interested in the probability that the population dies out before the kth generation,
where we start with generation 0.

For k = 1, this probability is

Pr[X = 0] = E
[
0X
]
= f(0).

For k = 2, the answer is

(Pr[X = 0])X = f(f(0)).

Inductively, we have that the probability of the population dying out in k generations is

f(f(. . . f(0) . . . )) = fk(0).

By the definition of q in the theorem statement,

lim
k→∞

fk(0) = q.

We claim that q is the smallest fixed point of f ; let this value be qfixed. We have

0 ≤ qfixed,

f(0) ≤ f(qfixed) = qfixed,

...

fk(0) ≤ fk(qfixed) = qfixed.

Thus q = qfixed.

In particular,

q = E[qX ] =
∞∑
k=0

qk Pr[X = k].
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Since X is a Poisson random variable with mean λ, this gives us

q =
∞∑
k=0

qk Pr[X = k]

=
∞∑
k=0

qk · λ
k

k!
e−λ

= e−λ

∞∑
k=0

(qλ)k

k!
.

The sum
∑∞

k=0
(qλ)k

k!
is the power series for eqλ, so we have

q = e−λ+qλ = eq(1−λ).

Therefore, the probability that the organisms go extinct eventually is the smallest nonnega-
tive solution to q = eλ(q−1).

■

Now let’s look at the application of this branching process in our random graph G(n, p).

On our component, we conduct a breadth-first search similar to the branching process,
starting from a root node u. First, suppose p = λ

n
.

Let N(u) denote the set of vertex u’s neighbors in G(n, p). Since each edge to the other
n− 1 vertices appears with probability p, the number of “children” that u is connected to is

|N(u)| = Bin(n− 1, p) → Pois(λ).

Consider one vertex v that is a child of u. We have n − 1 − |N(u)| other vertices (not
counting children of u) that can be v’s children. Thus

|N(v)| = Bin(n− 1− |N(u)|, p) → Pois(λ)

as well.

Our approximations of |N | as Poisson hold as long as we have only discovered a small
number of vertices (negligible compared to n) through the branching process. The behavior
of our branching process then allows us to determine whether our component is large or
small, and also roughly bound the component order. Small components correspond to the
organisms dying out in our branching process analogy, and the giant component corresponds
to the organisms living “forever.” We will find that the probability of having components
of certain orders often decreases exponentially, meaning that smaller components have order
at most O(log n).

Let C be a small component containing some vertex u. We will evaluate the behavior of
Pr[|C| = k]. There is a high probability that C is a tree, because we need to choose k − 1
other vertices in O(nk−1) ways; in order for this component to exist with nonzero probability,
we have at most k − 1 edges (with probability pk−1).
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For fixed k, there are
(
n−1
k−1

)
ways to choose the other k vertices in the component, kk−2 to

arrange the k vertices into a tree. Then, there is

pk−1(1− p)k(n−k)+(k2)−(k−1)

probability of having the correct edges in the graph: k − 1 edges in C, k(n − k) non-edges
between vertices in C and vertices not in C, and

(
k
2

)
− (k − 1) non-edges in C.

Therefore, if n ≫ k,

Pr[|C| = k] =

(
n− 1

k − 1

)
kk−2pk−1(1− p)k(n−k)+(k2)−k+1

∼ nk−1

(k − 1)!
kk−2

(
λ

n

)k−1(
1− λ

n

)kn

∼ e−λk · λ
k−1kk−2

(k − 1)!

= e−λk · (λk)
k−1

k!
.

Also, k! =
(
k
e

)k ·P (k), where P is a polynomial in k. As k → ∞, we consider only exponential
terms, giving us

Pr[|C| = k] ∼ e−λk · (λk)
k−1

kk/ek

∼
(
λe−λ+1

)k
.

The graph of λe−λ+1 shows that the function is < 1 unless λ = 1, in which case this evaluates
to 1. Thus, if λ ̸= 1, the probability of having component of order k decreases exponentially,
so all small components have order at most O(log n), as desired.

Next, if λ > 1, the number of vertices in small components is at most cn for c < 1, so there
must be a giant component with at least O(n) vertices. We claim that this giant component,
with εn vertices for ε > 0, is unique.

Let p = λ
n
= (1− p1)(1− p2), where p1 = n−3/2 and p2 is roughly p = λ

n
. Then

G(n, p) = G(n, p1) ∪G(n, p2).

Since p1 = n−3/2 ≪ 1
n
, with high probability G(n, p1) has no giant components. Also,

G(n, p2) has a giant component, but we must show that G(n, p) has at most 1 such compo-
nent. Suppose that G(n, p2) has 2 giant components. The probability that, after adding in
the edges from G(n, p1), the two components have not been merged is

(1− p1)
(εn)2 ∼

(
1− n−1/2

n

)n·ε2n

∼ e−n− 1
2 ε2n

= e−ε2
√
n → 0,
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as n → ∞.

This probability decreases exponentially, and there are 1
ε
components to merge, so with

high probability they all merge in G(n, p) into a single giant component, as claimed.

8. Simplicial Complexes

A generalization of the random graph to higher dimensions brings us to random simplicial
complexes. By extending to higher dimensions, simplicial complexes allow us to model not
only pairwise interactions through edges, but also network interactions involving multiple
objects.

Definition 8.1. A k-simplex is the k-dimensional equivalent of an edge, triangle, or tetra-
hedron, which are the 1, 2, and 3 dimensional simplices.

Definition 8.2. A simplicial complex is a structure described by a set of simplices (vertices,
edges, triangles, tetrahedra, etc.). A simplicial k-complex is then a simplicial complex where
the highest dimension of its simplices is k.

In 2006, Linial and Meshulam began the study of random simplicial complexes with their
paper Homological Connectivity of Random 2-Complexes. They considered the complete
“skeleton” graph on n vertices, then added triangles to the 2-simplicial complex, each with
probability p. This leads to the following definition of a random 2-simplicial complex, anal-
ogous to that of a random graph.

Definition 8.3. A random 2-simplicial complex Y (n, p) is the probability space of 2-dimensional
simplicial complexes with n vertices and

(
n
2

)
edges connecting every pair of vertices, such

that each of the
(
n
3

)
possible triangles has p probability of being in the complex.

Linial and Meshulam discovered a threshold for the homological connectivity of 2-simplicial
complexes analogous to the connectivity of random graphs in Theorem 6.1. In fact, topolog-
ically, graph connectivity is homological 0-connectivity. The following theorem appears as
stated in their paper.

Theorem 8.4. Consider a function ω(n) ≥ 0 such that ω(n) tends to ∞ as n tends to ∞.
Then, as n → ∞,

Pr[H1(Y (n, p),F2)] →

{
0 if p = 2 logn−ω(n)

n
,

1 if p = 2 logn+ω(n)
n

,

so 2 logn
n

is a threshold for F2-homological 1-connectivity.

The case of p = 2 logn−ω(n)
n

is similar to the corresponding proof for random graphs: we find
the expected number of isolated edges, rather than vertices, then apply the second moment

method. However, p = 2 logn+ω(n)
n

is more complex. The proof of this theorem and other
topological thresholds for 2-complexes is an area for further study.

Acknowledgments. The author would like to thank Dr. Simon Rubinstein-Salzedo and
Euler Circle for providing the opportunity to write this paper, as well as Nitya Mani for her
support and expertise on the topic.



RANDOM GRAPHS AND SIMPLICIAL COMPLEXES 21

References

[AS90] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley & Sons, Inc., New York, 1990.
[Cse15] Timothy Csernica. Extinction in single and multi-type branching processes. 2015.
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[Kah13] Matthew K. Kahle. Topology of random simplicial complexes: a survey. 2013.
[Kah16] Matthew K. Kahle. Random simplicial complexes. 2016.
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