
Fast Integer Multiplication Algorithms

Benjamin Hillard

Euler Circle

June 2022



Time Complexity with Multiplication Algorithms

Big O notation shows the limiting behavior of a function when an
input approaches a certain value, typically infinity.
For example, if I had an algorithm that required 3n3 + 6n2 − log6 n
steps, the big O notation for the limiting behavior as n → ∞
would be simply O(n3).
To measure the speed of multiplication algorithms, big O notation
is used and is represented in terms of the number of digits in the
factors, which will be called n.



Multiplication Algorithm

The standard algorithm or long multiplication is the most
well-known multiplication algorithm.
It is performed by writing the two factors down, multiplying every
digit from one factor by every digit from the other, and getting the
sum of all the products to get the final product.
This algorithm has a time complexity of O(n2), as the number of
operations is ≈ 2n2 depending on what you count.



New Integer Multiplication Algorithms

Long multiplication was the most efficient method to multiply any
two integers since time immemorial, until new algorithms were
found.
1960: Karatsuba algorithm: O(nlog2 3) ≈ O(n1.585).
1963: Toom-Cook algorithm: O(nlog10 5/ log10 3) ≈ O(n1.465).
1970: The Schönhage–Strassen algorithm: O(n log n log log n).
In the same paper a limit of the lowest time complexity of
O(n log n) is conjectured.
2020: The Harvey-van der Hoeven algorithm: O(n log n).



The Karatsuba Algorithm

I will now go into a explanation of how to use the Karatsuba
algorithm and why it works. It has three main steps, which are to

1 split,

2 evaluate and

3 sum all parts.



Split

The algorithm will be performed in base b with the integer factors
l and m. First split the numbers into two parts evenly in terms of
digits in positional notation, where l0 and m0 are the first ⌈n/2⌉
digits of l and m from the right, and l1 and m1 are the first ⌊n/2⌋
digits of l and m from the left.
For example, for the factors l = 1234 and m = 5678, n = 4 and
l1 = 12, l0 = 34, m1 = 56, and m0 = 78.



Evaluate

First, let z0 = l0m0 and z2 = l1m1, which in a typical
implementation would be done using the Karatsuba algorithm or
the standard algorithm, depending on the situation and size of the
factors. Next, find the sums (l0 + l1) and (m0 +m1), and multiply
them to get (l0 + l1)(m0 +m1)
In the example from before, z0 = 12 ∗ 56 = 672 and
z2 = 34 ∗ 78 = 2652. Then
(l0 + l1)(m0 +m1) = (12 + 34)(56 + 78) = (46)(134) = 6164



Evaluate

From here, let z1 = (l0 + l1)(m0 +m1)− (l0m0)− (l1m1). Now,

(l ∗m) = z2 ∗ bn + z1 ∗ bn/2 + z0.

Again, in the example z1 = 6164− 2652− 672 = 2840. Then, base
b = 10 and n = 4, so

(1234 ∗ 5678) = 672 ∗ 104 + 2840 ∗ 102 + 2652

(1234 ∗ 5678) = 6720000 + 284000 + 2652

(1234 ∗ 5678) = 7006652.

And there’s our product. Ta-da!
Note that all multiplication operations performed would be
performed likely using the Karatsuba algorithm, but was skipped in
the example.



Run-time

The algorithm will perform recursively by splitting a single
multiplication into three smaller multiplications, where each factor
has at most half the digits. If n = 2k for some integer k , the
algorithm will run at most k times, and split down into 3k

single-digit multiplication operations. And for any number, leading
zeros can be placed in front of the number without changing it’s
value in order to give it n = 2k for some k. For any factors where
n ≤ 2k , the number of single-digit multiplication operations with
be at most 3k . Note that k = log2 n, so if T (n) is the number of
single-digit multiplication operations required to multiply any two
factors using the Karatsuba algorithm, then T (n) = 3log2 n. T (n)
can also be written as nlog2 3 or n1.585.



Practicality

A final note: in a practical sense, the standard algorithm is still
very strong and is used to multiply integers of a visible scale. In
most implementations, there are multiple different algorithms used
based on the size, so when multiplying two large integers it may use
several different algorithms while breaking down the multiplication.
For example, the GNU C library uses seven different algorithms to
multiply similar-size integers based on the size of factors.
For all implementations the practical thresholds to different
algorithms change based on different operating systems and
hardware.


