
EVOLUTION OF FAST INTEGER MULTIPLICATION ALGORITHMS

BENJAMIN HILLARD

Abstract. This paper will discuss a few algorithms which can be used to multiply two
integer factors in an efficient manor. The Karatsuba algorithm from 1960 will be described
as well as how one would calculate the time complexity of using it for any two integers.
The steps to the Toom-Cook algorithm are also outlined with some information on time
complexity of the algorithm as well. The paper also briefly goes over various other integer
multiplication algorithms developed in the more recent past that gradually reduce the time
complexity to the conjectured limit of O(n log n).

1. Introduction

Throughout all of history, mathematicians have multiplied integers. This was used for
tasks such as selling products, building structures, counting quickly, navigation, predicting
amounts, and many more things. For nearly all that time, the best known method to multiply
these two integers was to use long multiplication by writing down the two numbers, getting
the product of each digit multiplied by every other digit of the other factor, and summing
these products to get the final product. This was the only efficient way of multiplying integers
until in 1960, when a 23-year-old Russian student Anatoli Karatsuba, in response to a claim
from a professor, found a way to multiply two integers faster than with long multiplication
and began a quest for the fastest way to multiply numbers.

The Karatsuba algorithm, as stated above, is an algorithm which can be used to multiply
two integers with asymptotically less steps than is needed with long multiplication. The basic
idea is to use more addition and subtraction in order to lower the amount of multiplication
required, as multiplication is a more ‘difficult’ operation than addition or subtraction. The
algorithm also splits down recursively such that it is used by itself to multiply integers, which
intuitively makes sense but is important to keep in mind. This algorithm also led to the
discovery of the Toom-Cook algorithm.

The Toom-Cook algorithm is also performed recursively, but it actually includes several
different instances where different operations are done differently. One of these instances is
in fact identical to the Karatsuba algorithm, and the Toom-Cook algorithm can be called a
generalization of the Karatsuba algorithm. Each of these different instances has a different
amount of steps required based on the size of the factors, but it can be made to perform
asymptotically faster than other algorithms before it.

After Toom-Cook came the Schönhage-Strassen algorithm, which was asymptotically even
faster than those before. It is also much more complex, requiring more than just basic
operations such as using the Convolution Theorem, roots of unity, and using shifts of digits
of numbers in binary. While the process is more complex, it still preforms faster for very
large numbers than the others do.

Date: June 2022.
1



2 BENJAMIN HILLARD

With all of these algorithms, there is added complexity which adds more time. As a result,
all of the multiplication algorithms discussed in this paper are actually much slower for any
values that can be easily written. For any human it is much faster to use long multiplication
for any numbers that could be easily written down, as even the Karatsuba algorithm only
becomes faster with numbers with thousands of digits, and other later ones with even larger
numbers. That is why they are considered only asymptotically faster, but that doesn’t mean
they are not useful for many different things.

1.1. Background. The time complexity of these algorithms is typically used to determine
their speed/efficiency, and the notation used is big O notation. Big O notation is used to
describe the behavior of a function as the input approaches a certain value, in this case the
number of operations as the size of the inputs approach infinity. It is written as the greatest
term in order of magnitude without any constants, as this will show the behavior of the
function as it approaches infinity.

For example, the big O notation of a quadratic function as it approaches infinity would
be written as

O(x2).

Note that numbers such as the base of a logarithm function are also considered constants
and removed as they will not change the end behavior of the function.

In this paper when discussing multiplication algorithms, n will be used to represent the
number of digits in each of the factors in terms of any arbitrary base. So if the function for
the number of operations required by an algorithm is S(n) = 3n4 − 6n + 2, then the time
complexity for that algorithm would be O(n4).

Long multiplication has a time complexity of O(n2), and many thought that this was the
limit before Karatsuba made his algorithm (with time complexity ≈ O(n1.585)). Note that
this does not mean long multiplication will always take n2 operations (in fact it takes about
2n2 depending on what you count as an operation), but that with very large n the number
of operations used by long multiplication will behave as a quadratic.

If one wanted to calculate the time complexity of a counting algorithm, where given
a sequence of all integers from 1 to an arbitrary end integer w, it counts the amount of
numbers by going one by one and counting up by one (not an efficient algorithm but this is
an example), they would do as follows. This algorithm will always have to check w numbers,
and we will consider checking if there is a number a step and adding one to the total also as
a step. Thus, this algorithm will always perform in 2w steps, meaning that the number of
steps it takes is proportional to w, so the big O notation for the time complexity would be
simply O(w).

Big O notation has much more to it than this, and I would encourage a visit to some chart
that shows all the different variation if one is curious. However, for this paper that is all
that one will need to know.

For these algorithms, the hardest part turns out to be the multiplication of smaller factors
inside the algorithm. These smaller operations are then done with some integer multiplica-
tion algorithm, which again uses smaller instances of integer multiplication in it’s process.
Because of this, recursive multiplication typically ends up being the most time consuming
part of multiplication algorithms. In most algorithms, the final multiplication step is once
it becomes two single digit factors and it cannot be broken down further, at which point a
human who knows the multiplication table well will immediately know the answer, or some
computer logic gives the answer.



EVOLUTION OF FAST INTEGER MULTIPLICATION ALGORITHMS 3

2. The Karatsuba Algorithm

In 1962 the Karatsuba algorithm, designed by Anatoly Karatsuba, was published and in
this algorithm Karatsuba showed a method in which two n-digit integers could be multi-
plied in less than O(n2) single-digit multiplication operations, which is the time complexity
of multiplying those same numbers using the standard algorithm. Karatsuba’s algorithm
achieves the time complexity of O(nlog2 3), approximately O(n1.585).

2.1. The Karatsuba Algorithm Formula. Let a and b be integers in base B. To multiply
them using the Karatsuba algorithm, we do as follows. First, without loss of generality,
assume a is greater than or equal to b. Let n denote the number of digits in the base B
representation of a. For any positive integer m that is less than n, the two numbers can be
written as

a = a1 ∗Bm + a0
and

b = b1 ∗Bm + b0,

where a0 and b0 are the first m digits in base B of a and b from the right, and a1 and b1 are
the rest of the digits in base B from the right, or the first n−m digits in base B from the
left, of a and b.1 Thus, the product of a and b can be written as

ab = (a1 ∗Bm + a0)(b1 ∗Bm + b0)

= a1b1 ∗B2m + (a1b0 + a0b1) ∗Bm + a0b0

= c2 ∗B2m + c1 ∗Bm + c0

where

c2 = a1b1

c1 = a1b0 + a0b1

c0 = a0b0.

The final expression for the value of ab in terms of c2, c1, c0 could be solved by computing
four products, but the value of c1 can also be written as

(a1 + a0)(b0 + b1)− c2 − c0

because

c1 = (a1 + a0)(b0 + b1)− c2 − c0

= (a1 + a0)(b0 + b1)− a1b1 − a0b0

= a1b0 + b1a0 + a1b1 + a0b0 − a1b1 − a0b0

c1 = a1b0 + b1a0.

Using this alternate method of getting c1 reduces the number of products computed by one
by using addition and subtraction. The final product in terms of c0, c1, and c2 can then be
given by

ab = c2 ∗B2m + c1 ∗Bm + c0.
2

1The most efficient choice of m is n/2, rounded up, so that the number of recursive calls by the function
is minimized.

2The multiplication by B to some power is not counted as a multiplication operation for time complexity
purposes as it can be done by simply shifting the other factor to get the product.



4 BENJAMIN HILLARD

Thus, in the example where a and b are two digit integers, the product can be calculated
using just three single-digit multiplications with more addition and subtraction, instead
of the four single-digit multiplications that would be needed with the standard algorithm.
This holds for a and b with larger n, and as n increases in size the number of single-digit
multiplications will approach nlog2 3 or n1.585.
Practically, the Karatsuba algorithm is performed recursively until the point in which

it is more efficient to switch to long multiplication to multiply integers. This means that
in the steps where a1b1, a0b0 and (a1 + a0)(b0 + b1) are realized, the Karatsuba algorithm
would again be used for multiplication if the two integers are sufficiently large, otherwise the
standard algorithm would be used.

2.2. The Karatsuba Algorithm Time Complexity. As stated immediately before, the
Karatsuba Algorithm is used recursively; it is used to perform multiplication in itself.

Proposition 2.1 (Karatsuba Time Complexity). The Karatsuba algorithm runs with time
complexity of O(nlog23).

Proof. The algorithm will perform recursively by splitting a single multiplication into three
smaller multiplications, where each factor has at most half the digits. If n = 2k for some
integer k, the algorithm will run at most k times, and split down into 3k single-digit multipli-
cation operations. And for any number, leading zeros can be placed in front of the number
without changing it’s value in order to give it n = 2k for some k. For any factors where
n ≤ 2k, the number of single-digit multiplication operations with be at most 3k. Note that
k = log2 n, so if T (n) is the number of single-digit multiplication operations required to
multiply any two factors using the Karatsuba algorithm, then T (n) = 3log2 n. T (n) can also
be written as nlog2 3 or n1.585. ■

When considering time complexity and writing it in in big O notation, only the asymptotic
behavior is shown. The number of additions and subtractions performed by the Karatsuba
algorithm is proportional to n, and as such is not visible in the asymptotic behavior of the
time complexity of the Karatsuba algorithm and can be ignored in big O notation. Thus,
the time complexity can be written as O(nlog2 3) or O(n1.585). (Karatsuba & Ofman, 1962)

2.3. Karatsuba Algorithm Example. Following is an example of the Karatsuba algo-
rithm. We will be calculating 4321 ∗ 9876, so a = 4321, b = 9876 and base B = 10, so n = 4.
The first step is to chose a good m, which (1) will be n/2 = 2. Thus, for a1 = 43, a0 = 21,
b1 = 98 and b0 = 76,

a = a1 ∗Bm + a0

b = b1 ∗Bm + b0.

Next, we must calculate
c0 = a0b0 = 21 ∗ 76
c2 = a1b1 = 43 ∗ 98,

as well as
c1 = (a1 + a0)(b0 + b1)− c2 − c0 = 64 ∗ 174− c2 − c0

These smaller products would also be calculated via some multiplication algorithm, the
specific algorithm changing depending on their size. For simplification purposes, this will be
skipped and the products are:

c0 = 1596



EVOLUTION OF FAST INTEGER MULTIPLICATION ALGORITHMS 5

c2 = 4214

c1 = 11136− c2 − c0 = 11136− 4214− 1596 = 5326.

From here, we simply shift certain values and get the sum:

ab = c2 ∗B2m + c1 ∗Bm + c0

= 4214 ∗ 104 + 5326 ∗ 102 + 1596

= 42674196.

Which is indeed the product of 4321 and 9876.

a1 a0

b1 b0

(a1 + a0)

(b1 + b0)

c2 c0 (c2 + c0)

c1

c2 ∗B2m c0 c1 ∗Bm

ab

+

+

=

=
∗ ∗

= =
+ =

∗

−

=

+ +

=

A diagram to visualize the Karatsuba Multiplication algorithm.

3. The Toom-Cook Algorithm

A few years later in 1963, Andrei Toom introduced another algorithm (which was improved
by Stephen Cook) for multiplying integers which has an even lower asymptotic behavior of
O(nlog10(5)/ log10(3)) ≈ O(n1.465) and is a generalization of the Karatsuba Algorithm.

This algorithm has five main steps, several of which are shared by many other algorithms.
These are to

• 3.1 split,
• 3.2 evaluate,
• 3.3 multiply point wise,
• 3.4 interpolate a new value and
• 3.5 recombine.

It also has different instances where a variable that determines how many smaller parts the
factors are split into during the algorithm changes. This will be called k, and typically
the instance is named with the form “Toom-k.” The Karatsuba algorithm is an example of
Toom-2, and the most well-known instance of the Toom-Cook algorithm is Toom-3.

Some important information used by this algorithm is that a polynomial of degree d can
be found with d+ 1 known points on the polynomial. Additionally for polynomials p and q,
(p ∗ q)(x) = p(x) ∗ q(x).

3.1. Split. For integer factors l and m, first choose a base B = bd, where b is the displayed
base (in most cases 10) and d is ⌈n/k⌉ + 1. This base B will mean that l and m in base B
will only have at most k digits. Next, take these digits of l and m in base B and place them
in a polynomials p(x) and q(x) with degree (k − 1) such that p(B) = l and q(B) = m.



6 BENJAMIN HILLARD

For example, if the digits of l and m in base B in positional notation are l1, l2 . . . , lk
and m1,m2, . . . ,mk, then the functions p(x) = l1x

k−1 + l2x
k−2 + . . . + lkx

0 and q(x) =
m1x

k−1 +m2x
k−2 + . . .+mkx

0.

3.2. Evaluate. Because there is a polynomial of degree at most d through any (d+1) points,
the polynomial that is the product of p and q can be calculated by using (d+1) points. And
because (p ∗ q)(x) = p(x) ∗ q(x), (pq) has the property (pq)(B) = l ∗m, the product we are
trying to calculate.

The degree of (pq) is the degree of p plus the degree of q, and the degree of p and of q is
k− 1, so to get this polynomial (pq) with degree (2k− 2) and will need (2k− 1) points on it.

For this step, evaluate both p and q at 2k − 1 points with the same inputs, which will be
called the evaluation points. In order to make this as simple as possible, choose inputs at
which the value will be simple to calculate. For Toom-3, (k = 3) the common points are
0, 1, 2,−1, and ∞. This last point at ∞ is not actually evaluating the polynomials at ∞ but
taking the limit of p(x)/xd as x goes to infinity, where d is the degree of the polynomial. This
will be the highest degree coefficient, and thus doesn’t require any calculations. Evaluating
polynomials at the point x = 2 does include multiplication by small integers, but these are
typically trivial in the final time calculation.

For a later step, the interpolation matrix will be defined as a matrix of size (2k−1)×(2k−1)
where each row contains powers of one of these evaluation points, where the power is the
column index from 0 to (2k − 2) (The highest degree of p and q). In the Toom-3 algorithm
the interpolation matrix may look like:

00 01 02 03 04

10 11 12 13 14

(−1)0 (−1)1 (−1)2 (−1)3 (−1)4

20 21 22 23 24

0 0 0 0 1

 =


1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
0 0 0 0 1

 .(3.1)

Note that the last row is the limit, and when this matrix is multiplied by a vector of the
coefficients, the final entry in the resulting vector will be the coefficient of the highest degree.

3.3. Multiply Points. Next multiply each point by its partner from the other polynomial,
so calculate p(x) ∗ q(x) for each of the 2k − 1 points. Remember these will all lie on the
polynomial (pq) which has the property (pq)(B) = l ∗m.

This is the “hardest” part of the algorithm, because for practical implementations the
algorithm is performed recursively to compute each of these multiplications, and this is the
only part which is non-linear in its operations in terms of l and m.

For the next step, it will be useful to have these solutions of (pq)(x) be in a vector called
the solution vector.

3.4. Interpolate. Now these points can be used to find the coefficients of polynomial (pq)
by using matrix multiplication. To do this, note that the interpolation matrix with powers
of inputs, when multiplied by a new vector of the coefficients c0, c1, . . . c2k−1 of (pq)(x), will
equal the vector made in the previous steps of the solutions of (pq)(x). In the case of Toom-3,



EVOLUTION OF FAST INTEGER MULTIPLICATION ALGORITHMS 7

this may look like 
1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
0 0 0 0 1



c0
c1
c2
c3
c4

 =


(pq)(0)
(pq)(1)
(pq)(2)
(pq)(3)
(pq)(4)

 .(3.2)

This equation can then be solved for the vector of coefficients by multiplying both sides by
the inverse of the interpolation matrix. As long as the evaluation points chosen are suitable,
this is possible. This means that

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
0 0 0 0 1


−1 

(pq)(0)
(pq)(1)
(pq)(2)
(pq)(3)
(pq)(4)

 =


c0
c1
c2
c3
c4

 .(3.3)

Next calculate the inverse of the matrix and realize the matrix equation (which again is
relatively trivial compared with the multiplication of much larger numbers). The resulting
vector contains the coefficients of the polynomial (pq), which will also be the digits of the
product that we want, (lm), in base B.

3.5. Recombine. This last step is rather simple, just solve the polynomial (pq) for B, and
that will be the final product.

3.6. Time Complexity. The Toom-Cook algorithm runs with different a time complexity
depending on what value of k is chosen. For example, Toom-2, where k = 2, is just the
Karatsuba algorithm and runs at the same time complexity of O(nlog2 3). Long multiplication
is just Toom-1 where k = 1 and has again the same time complexity of O(n2).
The Toom-Cook algorithm can be said to run in O(T (k, n) ∗ nlog10(2k−1) log10(k)) where T

is the time to perform all additions and multiplications by smaller integers and changes
depending on k and n, and the power of n is the time to perform sub-multiplications. As
the number k increases, the power of n will decrease but the function T will increase.

4. The Schönhage-Strassen Algorithm and O(n log n) Conjecture

This algorithm, published by Arnold Schönhage and Volker Strassen in 1971, came af-
ter the field had undergone some research. It follows a similar pattern to the Karatsuba
algorithm and Toom-Cook algorithm, in which the factors are sectioned apart, evaluated
in some way, interpolated to find some new value based on information known, and finally
added back together. The algorithm can be considered a specialized algorithm, as instead of
computing the product of two integers a and b, it computes ab mod 2C +1, where C is also
taken as an input. This is largely inconsequential, as long as the chosen C is large enough
that ab mod 2C + 1 = ab.

This algorithm makes use of roots of unity, which are complex numbers that, when raised
to a power, equal one. They are a bit more complicated than that, but that is all that one
needs to know to use the algorithm. They are also called de Moivre numbers, and if jth root
of unity is z, then zj = 1. Additionally, if a jth root of unity is primitive then zk ̸= 1 for
k < j and k ∈ N.



8 BENJAMIN HILLARD

This algorithm also relies on negacyclic convolutions, which can be represented as a vec-
tor of numbers, to compute a product quickly. When multiplying two numbers using the
standard algorithm, first one places one factor over the other, then multiply each digit in-
dividually, then one adds each digit in every decimal position to get a sum, and perform
carrying to get the final result. The linear convolution of the two products is simply the
vector of numbers that one has before performing carrying. In a more visual manner:

9 8 7

1 2 3∗

212427

141618

789

213850269 The linear convolution of 987 and 123.

This linear convolution will always have 2n− 1 elements, where n is the number of digits
base B. To get what is called the acyclic convolution of the two numbers, take the first n
digits of the linear convolution going from the right and add them to the first n − 1 digits
going from the left.

213850

269+

474750 The acyclic convolution of 987 and 123.

Inversely, the negacyclic convolution of two numbers is calculated by taking to first n
digits of the linear convolution going from the right and instead subtracting the first n − 1
digits going from the left from them.

213850

269−

−52950 The negacyclic convolution of 987 and 123.



EVOLUTION OF FAST INTEGER MULTIPLICATION ALGORITHMS 9

One property of the negacyclic convolution of two numbers, which is used in the S and
S algorithm, is that after performing carrying as one does with the standard algorithm, the
result will be the product of the two original numbers reduced modulo Bn+1. For the example
shown in the diagrams above, after performing carrying 3 on the negacyclic convolution
(50, 29,−5), the result is 5285, which is congruent to the product of 123 ∗ 987 = 121401
reduced modulo 103 + 1 = 1001. In symbols, 5285 ≡ 121401 mod 1001. This is how the
result of the multiplication is actually calculated.

To complete this algorithm is it also important to understand a Fourier transform. It has
many applications in both math and frequency, and I would highly recommend checking it
out if you would like to know more. For this paper, it will only be important to understand
that, when given a continuous function in terms of space or time for a range of values, it
will decompose it and give functions depending on frequency. The Fourier transform of an
integrable function f : R → C can be defined by

f̂(ξ) =

∫ ∞

−∞
f(x)e−i2πξxdx, ∀ξ ∈ R.

Where the transform of function f(x) at frequency ξ is given by the complex number f̂(ξ).
Two more pieces of background needed for this algorithm are the Discrete Fourier Trans-

form and Fast Fourier Transform, which as they sound are an extension of the Fourier
transform. A Discrete Fourier transform, given a finite sequence of equally-spaced samples
of a function will give a sequence of the same size of samples of the discrete-time Fourier
transform. The discrete-time Fourier transform, when given a sequence of uniformly spaced
samples of a function, produces a function of frequency that is a periodic summation of the
continuous Fourier Transform of the original continuous function that produced the sequence.

4.1. The Schönhage-Strassen Algorithm Formula. The product of x and y can be
calculated as follows:4 For this algorithm, it is necessary to form a vector R = rj, 0 ≤ j < n
where r is a primitive 2nth root of unity (so r2n = 1). We will also need a vector R−1 =
r−j, 0 ≤ j < n for the same r. These will be used to perform a negacyclic convolution in
a later step. Choose an integer C large enough that 2C + 1 is larger than xy (any value
of C ≥ 2n log2B is valid, as 22n log2 B + 1 = B2n + 1 will always be larger than xy). Now,
choose a value d such that 2d is a factor of C, and slice x and y both into vectors X and Y
with 2d sections of equal size in terms of digits for base B. Then choose the smallest integer
f ≥ 2C/2d + d and divisible by 2d. This will be used to recursively call the algorithm. Next
is the main step, which will compute the negacyclic convolution of x and y and perform
carrying to get the final product.

For both X and Y , multiply the vector by the weight vector R using shifts by shifting
the jth entry to the left by jc/2d. Next compute the Discrete Fourier Transform of both
resulting vectors, which can be done using the Fast Fourier Transform by shifting the 2kth
root of unity by 22c/2

d
. Now multiply corresponding entries in X and Y . This includes some

multiplication, for which in most practical cases the S and S algorithm or an instance of
the Toom-Cook algorithm would be used. Now get the inverse Discrete Fourier Transform
of the product vector and again only use shifts. Now once more using shifts multiply the
resulting vector by R−1. This vector is nearly the negacyclic convolution of the original X

3Using borrowing for negative numbers is also necessary as with long multiplication.
4This is actually a variant of the original Schönhage-Strassen algorithm which can be done in slightly less

time by using the discrete Fourier transform to perform negacyclic convolutions faster.



10 BENJAMIN HILLARD

and Y , now for all negative value add 2d + 1 until that entry is positive. Additionally, one
can compute the largest possible positive value for the jth entry to be just (j + 1)22C/2d, so
for all values greater than this subtract the modulus 2d + 1.
This vector is the negacyclic convolution of X and Y , and as stated previously after

performing carrying the resulting number will be the product (mod B2 + 1). And because
of the base chosen for our convolution (C) is large enough, this will be the product of the
original integers x and y. (Schönhage–Strassen algorithm, 2022) (Schönhage & Strassen,
1971)

5. Integer Multiplication algorithms in the 2000s and 2010s

During the 2000s and 2010s research on fast integer multiplication algorithms was con-
tinued and would build off of previous methods found. I am going to merely mention each
algorithm and some details about it in order to give an idea of how this area of study evolved
over time. I will not be showing any proofs or the actual algorithms, but if anyone reading
this is interested in anything mentioned here, definitely put it on your reading list. In this
section, the number n will always refer to the length of the two factors.

In 2007 Martin Fürer published an algorithm with a time complexity of O(n log n ∗
2O(log∗ n)). log∗ n is the iterated logarithm, which returns the number of times the logarithm
must be applied onto the previous result before it reaches 1.

In 2008, Anindya De, Piyush Kurur, Chandan Saha, and Ramprasad Saptharishi published
an algorithm which uses modular arithmetic instead of complex arithmetic, and achieves the
same time complexity of the Fürer algorithm: O(n log n ∗ 2O(log∗ n)).

In 2015, David Harvey, Joris van der Hoeven and Grégoire Lecerf published an algorithm
which achieved a running time of O(n log n ∗ 23 log

∗ n), creating a more ‘exact’ term 23 log
∗ n

instead of the earlier 2O(log∗ n). They also proposed a version of this algorithm that runs even
faster, at O(n log n ∗ 22 log∗ n), but depends on conjectures made about Mersenne primes.

In 2016, Svyatoslav Covanov and Emmanuel Thomé proposed a new algorithm that instead
relies on conjectures of Fermat primes and achieves the same running time of O(n log n ∗
22 log

∗ n).
In 2018 David Harvey and Joris van der Hoeven, who had both worked on an earlier

algorithm, used Minowski’s theorem to unconditionally prove the upper complexity bound
of O(n log n ∗ 22 log∗ n).
In 2019 they would go on to prove another algorithm which achieved the O(n log n) com-

plexity bound conjectured by Schönhage and Strassen. (Harvey & van der Hoeven, 2021)



References 11

References

Harvey, D., & van der Hoeven, J. (2021). Integer multiplication in time o(nlog n). Annals
of Mathematics , 193 (2). doi: 10.4007/annals.2021.193.2.4

Karatsuba, A., & Ofman, Y. (1962, 12). Multiplication of multidigit numbers on automata.
Soviet Physics Doklady , 7 , 595.

Schönhage, A., & Strassen, V. (1971). Schnelle multiplikation großer zahlen. Computing ,
7 (3-4), 281–292. doi: 10.1007/bf02242355

Schönhage–strassen algorithm. (2022, May). Wikimedia Foundation. Retrieved
from https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen

algorithm

https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm
https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm

	1. Introduction
	1.1. Background

	2. The Karatsuba Algorithm
	2.1. The Karatsuba Algorithm Formula
	2.2. The Karatsuba Algorithm Time Complexity
	2.3. Karatsuba Algorithm Example

	3. The Toom-Cook Algorithm
	3.1. Split
	3.2. Evaluate
	3.3. Multiply Points
	3.4. Interpolate
	3.5. Recombine
	3.6. Time Complexity

	4. The Schönhage-Strassen Algorithm and O(nlogn) Conjecture
	4.1. The Schönhage-Strassen Algorithm Formula

	5. Integer Multiplication algorithms in the 2000s and 2010s
	References
	References

