Model theory in Tarski's geometry

Batyrkhan Sakenov <sakenovbatyrkhan@gmail.com>

Euler Circle

July 10, 2022

Batyrkhan Sakenov | [Model theory in Tarski's geometry](#page-32-0)

1/18

KID KAR KERKER E 1990

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor."

2/18

KO K (O K E K E K E K G K K K K K K K K K K

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were not here."

4 ロ → 4 레 → 4 로 → 4 로 → 2 로 → 9 Q Q + 2/18

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

 $(M \wedge B)$ = "Minions were here and banana peels were all over the floor"

K ロ → K @ → K ミ → K ミ → 2 → 9 Q Q + 2/18

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were not here."

 $(M \wedge B)$ = "Minions were here and banana peels were all over the floor"

 $(B \to M)$ = "If banana peels were all over the floor, then minions were here."

K ロ → K @ → K ミ → K ミ → 2 → 9 Q Q + 2/18

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

 $(M \wedge B)$ = "Minions were here and banana peels were all over the floor"

 $(B \to M)$ = "If banana peels were all over the floor, then minions were here."

Here the *connective symbols* $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$ mean "not", "and", "or", "if \ldots , then", "if and only if". Symbols such as B and M are called sentence symbols.

4 ロ → 4 레 → 4 로 → 4 로 → 2 로 → 9 Q Q + 2/18

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

 $(M \wedge B)$ = "Minions were here and banana peels were all over the floor"

 $(B \to M)$ = "If banana peels were all over the floor, then minions were here."

Here the *connective symbols* $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$ mean "not", "and", "or", "if \ldots , then", "if and only if". Symbols such as B and M are called sentence symbols.

Also, need to define the symbol \models . Suppose we have a set of statements S and a statement C. Then $S \models C$ means that whenever S is true. C should be true.

2/18

K ロ X K (P) X (E) X (E) X (E) X (O) X (C)

A relation R is a set of n-tuples. Example, $(x, y, z) \in R$ iff $x|y|z$.

3/18

KID KAR KERKER E 1990

A relation R is a set of n-tuples. Example, $(x, y, z) \in R$ iff $x|y|z$.

Definition

A *language* $\mathcal L$ is a set of symbols for functions, relations, constants.

3/18

KID KARD KED KED E 1990

A \mathcal{L} -sentence is an \mathcal{L} -formula all variables of which have quantifiers (∃, ∀) before them.

Example

- $\forall y \exists x (x^2=y)$ is a sentence
- $\exists {\mathsf{x}}({\mathsf{x}}^2={\mathsf{y}})$ is not a sentence, because ${\mathsf{y}}$ does not have a quantifier

4/18

KO K K G K K E K V E K Y K K K K K K K K K

An $\mathcal{L}\text{-theory}$ T is a set of $\mathcal{L}\text{-sentences}$.

5/18

KID KAR KERKER E 1990

An $\mathcal{L}\text{-theory}$ T is a set of $\mathcal{L}\text{-sentences}$.

Now, for the sake of simplicity, we will be saying that ϕ is true in S if $S \vDash \phi$.

5/18

KO KARA KE KAEK LE YOKO

An $\mathcal{L}\text{-}theory$ \top is a set of $\mathcal{L}\text{-}sentences$.

Now, for the sake of simplicity, we will be saying that ϕ is true in S if $S \models \phi$.

Definition

We say that M is a model of a theory T (written $\mathcal{M} \models T$) iff $\mathcal{M} \models \phi$ for any $\phi \in \mathcal{T}$.

So, a structure M can have a theory T. Then for theory T, M is a model. A theory T is called *satisfiable* if T has a model.

5/18

KED KAP KED KED E LOQO

Model theory is the study of the relationship between theories, and their models.

Very often, we have a class of structures in mind and try to write a set of properties T (i.e. a theory) describing these structures. We call these sentences of \overline{T} axioms.

6/18

KORK ERKERK EI VAN

Proof of ϕ *is a series of formulas such that the last formula is* ϕ *.* and any formula in the series is either an axiom or follows from previous formulas by simple logical rules.

Definition

We write $T \vdash \phi$ if there is a proof of ϕ from T.

7/18

KID KARD KED KED E 1990

Theorem (Gödel's Completeness theorem)

Let T be an L-theory and ϕ an L-sentence, then $T \vdash \phi$ iff $T \vDash \phi$.

One direction of the theorem seems intuitively true because:

if ϕ is deducible from theory T, then it is true in theory T.

8/18

KORK ERKERK EI VAN

Theorem (Gödel's Completeness theorem)

Let T be an $\mathcal L$ -theory and ϕ an $\mathcal L$ -sentence, then $T \vdash \phi$ iff $T \models \phi$.

One direction of the theorem seems intuitively true because:

if ϕ is deducible from theory T, then it is true in theory T.

Definition

We say that a theory T is complete if for any $\mathcal L$ -sentence ϕ either $T \vDash \phi$ or $T \vDash \neg \phi$.

8/18

KORK ERKERK EI VAN

A language $\mathcal L$ is called *recursive* if there exists an algorithm that can check whether an arbitrary sequence of symbols is an \mathcal{L} -formula. A theory T called *recursive* if there exists an alorithm that can check whether a given sentence belongs to T .

イロト イ押 トイヨ トイヨ トー

9/18

重。 QQ We have an interesting theorem connecting completeness and recursiveness.

Theorem

If T is a recursive complete satisfiable theory in a recursive language \mathcal{L} , then T is decidable. That is there is an algorithm that when given an \mathcal{L} -sentence ϕ as input decides whether $T \vDash \phi$.

イロト イ押 トイヨ トイヨ トー

10/18

重工 QQ

Definition (Quantifier elimination)

We say that a theory T has quantifier elimination if every formula ϕ in T has an equivalent formula without quantifiers.

11/18

K ロ ▶ K (日) X (日) 2

Definition (Quantifier elimination)

We say that a theory T has quantifier elimination if every formula ϕ in T has an equivalent formula without quantifiers.

Example

Let $\phi(a, b, c)$ be the formula

$$
\exists x \; ax^2 + bx + c = 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Definition (Quantifier elimination)

We say that a theory T has quantifier elimination if every formula ϕ in T has an equivalent formula without quantifiers.

Example

Let $\phi(a, b, c)$ be the formula

$$
\exists x \; ax^2 + bx + c = 0.
$$

Then by the quadratic formula,

$$
\mathbb{R}\vDash\phi\leftrightarrow[(a\neq0\wedge b^2-4ac\geq0)\vee(a=0\wedge(b\neq0\vee c=0)].
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

A real closed field F is a field that satisfies the following properties:

- There is a total order on F (i.e. any two elements are comparable)
- \bullet Every positive element of F has a square root in F
- Any polynomial of odd degree with coefficients in F has at least one root in F.

The set of axioms for real closed fields is commonly called RCF theory.

12/18

YOU E KENKENKADNA

Theorem

The theory RCF admits elimination of quantifiers in the language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, \langle\}$.

KORK SERVER ARTICLE

Theorem

The theory RCF admits elimination of quantifiers in the language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, \langle\}$.

Corollary

RCF is complete and decidable. Thus, RCF is the theory of $(\mathbb{R}, +, \cdot, <)$ and decidable.

13/18

In 1920s a Polish-American mathematician, Alfred Tarski devised his own system of geometry, which contains a substantial fragment of Euclidean geometry (called elementary Euclidean geometry).

Figure: Alfred Tarski

÷.

 $2Q$

≮ロト (何) (日) (日)

In 1920s a Polish-American mathematician, Alfred Tarski devised his own system of geometry, which contains a substantial fragment of Euclidean geometry (called elementary Euclidean geometry).

After the development of this system, he proved that it is a model of the theory of real closed fields (RCF). Therefore, his system of geometry turned out to be decidable.

Figure: Alfred Tarski

(B) $2Q$

イロト イ母 トイヨ トイヨ トー

Fundamental relations.

 $B(x, y, z)$ - betweenness relation. It means that points x, y, z lie on a line and y is between x and z. $wx \equiv yz$ - congruence relation. It means that length of wx equals to the length of yz.

1日 → 1日 → 1日 → 1日 → 1日 + 2日 → 2000 + 15/18

Fundamental relations.

 $B(x, y, z)$ - betweenness relation. It means that points x, y, z lie on a line and y is between x and z. $wx \equiv yz$ - congruence relation. It means that length of wx equals to the length of yz.

Example

Initially Tarski proposed 24 axioms, but later their number was reduced to 11. Some axioms of Tarski's geometry:

Identity of Congruence: $xy \equiv zz \rightarrow x = y$. Transitivity of Congruence: $(xy \equiv zu \land xy \equiv vw) \rightarrow zu \equiv vw$.

15/18

A DIA 4 E A 4 E A 4 E A 4 DIA

Example

Some other examples:

Axiom of Pasch: $(Bxuz \land Byvz)$ → $\exists a (Buay \land Bvax)$. Five Segment axiom: $(x \neq y \land Bxyz \land Bx'y'z' \land xy \equiv$ $x'y' \wedge yz \equiv y'z' \wedge xu \equiv x'u' \wedge yu \equiv y'u') \rightarrow zu \equiv z'u'.$

4 0 8

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

÷.

 QQ

Lemma

All axioms of Tarski's system of plane geometry can be restated in formulas of RCF.

17/18 17/18

Lemma

All axioms of Tarski's system of plane geometry can be restated in formulas of RCF.

Proof. Note that we can assign to a point x the coordinates (x_1, x_2) , then. Betweenness:

$$
B(x, y, z) \leftrightarrow [(x_1 - y_1) \cdot (y_2 - z_2) = (x_2 - y_2) \cdot (y_1 - z_1)] \wedge \wedge [(0 \leq (x_1 - y_1) \cdot (y_1 - z_1))] \wedge [0 \leq (x_2 - y_2) \cdot (y_2 - z_2)]
$$

Equivalence:

FIGURE 21. The definition of betweenness in the Cartesian plane.

FIGURE 22. The definition of equidistance in the Cartesian plane.

17/18 17/18

Thanks for your attention!

イロト (伊) (ミ) (ミ) (ミ) ミニのダダー