Model theory in Tarski's geometry

Batyrkhan Sakenov sakenovbatyrkhan@gmail.com

Euler Circle

July 10, 2022

Batyrkhan Sakenov Model theory in Tarski's geometry

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor."

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

 $(M \land B) =$ "Minions were here **and** banana peels were all over the floor"

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

 $(M \land B) =$ "Minions were here **and** banana peels were all over the floor"

 $(B \rightarrow M) =$ "If banana peels were all over the floor, then minions were here."

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - 釣んで

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M$ = "Minions were **not** here."

 $(M \land B) =$ "Minions were here **and** banana peels were all over the floor"

 $(B \rightarrow M) =$ "If banana peels were all over the floor, then minions were here."

Here the *connective symbols* $\neg, \land, \lor, \rightarrow, \leftrightarrow$ mean "not", "and", "or", "if ..., then", "if and only if". Symbols such as *B* and *M* are called *sentence symbols*.

Let the symbol M represent the sentence "Minions were here", and the symbol B represent the sentence "Banana peels were all over the floor." Then

 $\neg M =$ "Minions were **not** here."

 $(M \land B) =$ "Minions were here **and** banana peels were all over the floor"

 $(B \rightarrow M) =$ "If banana peels were all over the floor, then minions were here."

Here the *connective symbols* \neg , \land , \lor , \rightarrow , \leftrightarrow mean "not", "and", "or", "if ..., then", "if and only if". Symbols such as *B* and *M* are called *sentence symbols*.

Also, need to define the symbol \vDash . Suppose we have a set of statements *S* and a statement *C*. Then $S \vDash C$ means that whenever *S* is true, *C* should be true.

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - 釣んで

A relation R is a set of n-tuples. Example, $(x, y, z) \in R$ iff x|y|z.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

A relation R is a set of n-tuples. Example, $(x, y, z) \in R$ iff x|y|z.

Definition

A language \mathcal{L} is a set of symbols for functions, relations, constants.

くロン くぼう くほう くほう 二日

A *L*-sentence is an *L*-formula all variables of which have quantifiers (\exists, \forall) before them.

Example

- $\forall y \exists x(x^2 = y)$ is a sentence
- ∃x(x² = y) is not a sentence, because y does not have a quantifier

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

4/18

An \mathcal{L} -theory T is a set of \mathcal{L} -sentences.

An \mathcal{L} -theory T is a set of \mathcal{L} -sentences.

Now, for the sake of simplicity, we will be saying that ϕ is true in *S* if $S \vDash \phi$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ◆臣 - のへで

An \mathcal{L} -theory T is a set of \mathcal{L} -sentences.

Now, for the sake of simplicity, we will be saying that ϕ is true in *S* if $S \vDash \phi$.

Definition

We say that \mathcal{M} is a *model* of a theory T (written $\mathcal{M} \models T$) iff $\mathcal{M} \models \phi$ for any $\phi \in T$.

So, a structure \mathcal{M} can have a theory \mathcal{T} . Then for theory \mathcal{T} , \mathcal{M} is a model. A theory \mathcal{T} is called *satisfiable* if \mathcal{T} has a model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Model theory is the study of the relationship between theories, and their models.

Very often, we have a class of structures in mind and try to write a set of properties T (i.e. a theory) describing these structures. We call these sentences of T axioms.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Proof of ϕ is a series of formulas such that the last formula is ϕ , and any formula in the series is either an axiom or follows from previous formulas by simple logical rules.

Definition

We write $T \vdash \phi$ if there is a proof of ϕ from T.

Theorem (Gödel's Completeness theorem)

Let T be an \mathcal{L} -theory and ϕ an \mathcal{L} -sentence, then $T \vdash \phi$ iff $T \vDash \phi$.

One direction of the theorem seems intuitively true because:

if ϕ is deducible from theory T, then it is true in theory T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Gödel's Completeness theorem)

Let T be an \mathcal{L} -theory and ϕ an \mathcal{L} -sentence, then $T \vdash \phi$ iff $T \vDash \phi$.

One direction of the theorem seems intuitively true because:

if ϕ is deducible from theory T, then it is true in theory T.

Definition

We say that a theory T is *complete* if for any \mathcal{L} -sentence ϕ either $T \vDash \phi$ or $T \vDash \neg \phi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A language \mathcal{L} is called *recursive* if there exists an algorithm that can check whether an arbitrary sequence of symbols is an \mathcal{L} -formula. A theory \mathcal{T} called *recursive* if there exists an alorithm that can check whether a given sentence belongs to \mathcal{T} .

イロト 不得 とくほ とくほう 二日

We have an interesting theorem connecting completeness and recursiveness.

Theorem

If T is a recursive complete satisfiable theory in a recursive language \mathcal{L} , then T is decidable. That is there is an algorithm that when given an \mathcal{L} -sentence ϕ as input decides whether $T \vDash \phi$.

イロト イボト イヨト イヨト

∃ 990

Definition (Quantifier elimination)

We say that a theory T has *quantifier elimination* if every formula ϕ in T has an equivalent formula without quantifiers.

◆□ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ ① ○ ○ 11/18

Definition (Quantifier elimination)

We say that a theory T has *quantifier elimination* if every formula ϕ in T has an equivalent formula without quantifiers.

Example

Let $\phi(a, b, c)$ be the formula

$$\exists x \ ax^2 + bx + c = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition (Quantifier elimination)

We say that a theory T has *quantifier elimination* if every formula ϕ in T has an equivalent formula without quantifiers.

Example

Let $\phi(a, b, c)$ be the formula

$$\exists x \ ax^2 + bx + c = 0.$$

Then by the quadratic formula,

$$\mathbb{R}\vDash \phi \leftrightarrow [(a
eq 0 \wedge b^2 - 4ac \geq 0) \lor (a = 0 \land (b
eq 0 \lor c = 0)].$$

(日)

A *real closed field* F is a field that satisfies the following properties:

- There is a total order on *F* (i.e. any two elements are comparable)
- Every positive element of F has a square root in F
- Any polynomial of odd degree with coefficients in *F* has at least one root in *F*.

The set of axioms for real closed fields is commonly called *RCF* theory.

Theorem

The theory RCF admits elimination of quantifiers in the language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem

The theory RCF admits elimination of quantifiers in the language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}.$

Corollary

RCF is complete and decidable. Thus, RCF is the theory of $(\mathbb{R}, +, \cdot, <)$ and decidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

In 1920s a Polish-American mathematician, Alfred Tarski devised his own system of geometry, which contains a substantial fragment of Euclidean geometry (called elementary Euclidean geometry).

Figure: Alfred Tarski

3

・ ロ ト ・ 同 ト ・ 国 ト ・ 国 ト ・

In 1920s a Polish-American mathematician, Alfred Tarski devised his own system of geometry, which contains a substantial fragment of Euclidean geometry (called elementary Euclidean geometry).

After the development of this system, he proved that it is a model of the theory of real closed fields (RCF). Therefore, his system of geometry turned out to be decidable.

Figure: Alfred Tarski

3

イロト イポト イヨト イヨト

Fundamental relations.

B(x, y, z) - *betweenness* relation. It means that points x, y, z lie on a line and y is between x and z. $wx \equiv yz$ - *congruence* relation. It means that length of wx equals to the length of yz.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fundamental relations.

B(x, y, z) - *betweenness* relation. It means that points x, y, z lie on a line and y is between x and z. $wx \equiv yz$ - *congruence* relation. It means that length of wx equals to the length of yz.

Example

Initially Tarski proposed 24 axioms, but later their number was reduced to 11. Some axioms of Tarski's geometry:

Identity of Congruence: $xy \equiv zz \rightarrow x = y$. Transitivity of Congruence: $(xy \equiv zu \land xy \equiv vw) \rightarrow zu \equiv vw$.

Example

Some other examples:

Axiom of Pasch: $(Bxuz \land Byvz) \rightarrow \exists a (Buay \land Bvax)$. Five Segment axiom: $(x \neq y \land Bxyz \land Bx'y'z' \land xy \equiv x'y' \land yz \equiv y'z' \land xu \equiv x'u' \land yu \equiv y'u') \rightarrow zu \equiv z'u'$.

・ 同 ト ・ ヨ ト ・ ヨ ト

.

Lemma

All axioms of Tarski's system of plane geometry can be restated in formulas of RCF.

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ@ 17/18

Lemma

All axioms of Tarski's system of plane geometry can be restated in formulas of RCF.

Proof. Note that we can assign to a point x the coordinates (x_1, x_2) , then. Betweenness:

$$egin{aligned} \mathcal{B}(x,y,z) &\leftrightarrow [(x_1-y_1)\cdot(y_2-z_2)=(x_2-y_2)\cdot(y_1-z_1)] \wedge \ &\wedge [(0\leq (x_1-y_1)\cdot(y_1-z_1))] \wedge [0\leq (x_2-y_2)\cdot(y_2-z_2)] \end{aligned}$$

Equivalence:

FIGURE 21. The definition of betweenness in the Cartesian plane.

FIGURE 22. The definition of equidistance in the Cartesian plane.

◆□ ▶ ◆□ ▶ ◆ Ξ ▶ ◆ Ξ ▶ ○ Ξ · ⑦ Q ○ 17/18

Thanks for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

18/18