
MODEL THEORY. DECIDABILITY OF EUCLIDEAN GEOMETRY

BATYRKHAN SAKENOV

Abstract. Big part of Euclidean geometry is actually decidable. It means that there exists
an algorithm that can check whether a statement in Euclidean geometry is true in a finite
number of steps. We show that the Euclidean space axiomatized by Tarski’s axioms is
decidable through mathematical logic and model theory in particular.

1. Introduction to logic symbols and definitions

1.1. Logic symbols. In logic we always use formal languages that have precise formulation
rules. Sentences in formal languages can be translated to English, though with a limited
degree of expressiveness. First, we consider some examples of translation to build up an
understanding of logic symbols.

The English sentence “A bag of potatoes was found” can be translated into the formal
language as, say, the symbol P . Then a closely related sentence “A bag of potatoes was not
found,” can be translated as ¬P . Here ¬ is our negation symbol, read as “not.”

Now suppose we have a sentence “Peels of potato were all over the floor” translated as F .
Then the following compound sentences in English can be translated as formulas

“A bag of potatoes was found and peels of potato were all over the floor”: (P ∧ F )
“If peels of potato were all over the floor, then a bag of potatoes was found”: (F → P )
“Either a bag of potatoes was not found, or peels of potato were not all over the floor:”

((¬P ) ∨ (¬F ))
We are now ready to introduce the table of logic symbols and their meanings in English.

Symbol Verbose name Remarks
( left parenthesis punctuation
) right parenthesis punctuation
¬ negation symbol English: not
∧ conjunction symbol English: and
∨ disjunction symbol English: or (inclusive)
→ conditional symbol English: if , then
↔ biconditional symbol English: if and only if
A1 first sentence symbol
A2 second sentence symbol
A3 third sentence symbol
. . .
An n-th sentence symbol
. . .

Here the five symbols ¬,∧,∨,→,↔ are called connective symbols. Their meanings (and
English translations) do not change in any logical language. Meanwhile the symbolsA1, A2, . . . , An
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are called sentence symbols. They can be considered as parameters, and their meanings are
not fixed.

1.2. Well-formed formulas. In logic an expression is a finite sequence of symbols. How-
ever, some expressions might not make sense; for example ((→ A is one of such sentences.
Therefore, as we want to work with sentences and formal languages that make sense, we
need to define “grammatically correct sentences”. We want a gramatically correct sentence
to satisfy the following rules:

(1) Every sentence symbol is a grammatically correct sentence.
(2) If α and β are grammatically correct sentences, then so are (¬α), (α∧β), (α∧β), (α →

β), and (α ↔ β)
(3) No expression is a grammatically correct sentence unless it is compelled to be one by

(1) and (2).

Now we introduce a formal definition of a grammatically correct sentence.

Definition 1.1. A well-formed formula (or simply wff ) is an expression that can be built
from sentence symbols by applying five formula building operations finitely many times.
Formula building operations are defined by the following equations.

E¬(α) = (¬α)
E∧(α, β) = (α ∧ β)
E∨(α, β) = (α ∨ β)

E→(α, β) = (α → β)

E↔(α, β) = (α ↔ β)

For example, A1, A2, A3, A4 are sentence symbols and wffs. Hence, E→(A1, A2) = (A1 → A2),
E∨(A3, A4) = (A3 ∨A4), and E↔((A1 → A2), (A3 ∨A4)) = ((A1 → A2) ↔ (A3 ∨A4)) are also
wffs.

As a matter of fact, there is an algorithm that can check whether an expression is a wff.
However, this algorithm is not needed for the purpose of this paper, so we do not discuss
it here. Instead, we provide some properties of wffs that and can provide reader with more
insight of a what grammatically correct sentence can and should look like.
Property 1. In any wff the number of “(” (left parentheses) equals to the number of “)”
(right parentheses).
Property 2. There are no wffs of length of 2, 3, or 6. Any other length is possible.
Property 3. Let α be a wff. Let C(α) denote the number of places at which binary
connective symbols (∧,∨,→,↔) occur in α. Also let S(α) denote number of places at
which sentence symbols (A1, A2, . . .) occur in α. Then S(α) = C(α) + 1. For example if
α = ((A1 → A2) ↔ (A3 ∨ A4)), then S(α) = 4, while C(α) = 3.

1.3. Truth assignments. We now talk about assigning values to our parameters. In par-
ticular, we are interested in assigning two values - False and True. First off all we fix a set
F, T of truth values consisting of two points

F , called a falsity
T , called a truth.

Definition 1.2. A truth assignment for a set S of sentence symbols is a function

v : S → {F, T}
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assigning either T or F to each symbol in S.

Now we consider the set S of wffs that are formed by five formula building operations on
sentence symbols of S. Then v, an extension of v, is a function

v : S → {F, T}

which assigns a truth value to each wff in S.

1.4. Tautological implication. This is the final subsection of the introduction to logic.
At the end of this subsection there is a note on definitions of the whole section.

Definition 1.3. We say that a truth assignment v satisfies a wff ϕ iff v(ϕ) = T . We also
say that a truth assignment v satisfies a set S of wffs if for any α in S we have v(α) = T .

We are now ready to define one of the key definitions in logic.

Definition 1.4. We say that a set of wffs Σ tautologically implies a wff τ (written as Σ ⊨ τ)
iff for any truth assignment on the set of sentence symbols of Σ ∪ {τ} that satisfies Σ also
satisfies τ .

For example if we have S = {A, (A→ B)}, then S ⊨ B.
Another interesting example can be seen when S = {A,B}. It is known that

(¬(A∧B)) ⊨ ((¬A)∨(¬B)). Moreover, the converse is also true: ((¬A)∨(¬B)) ⊨ (¬(A∧B)).
In such cases we say that (¬(A∧B)) and ((¬A)∨(¬B)) are tautologically equivalent (written
as (¬(A ∧B)) ⊨ ⊨((¬A) ∨ (¬B))).
Truth assignments do not appear later in the paper, but their main reason for being here

was to define what tautological implication is. Tautological implication is extensively used
to define main terminology and tools of model theory. Therefore, a reader is advised to get a
good understanding of what tautological implication is before properly diving into the next
section.

2. Languages and structures.

Model theory is an area of mathematical logic that studies relationships between formal
theories and their models. This might essentially say nothing to the reader if they do not
know what are formal definitions of theories and models. In this section we are going to
define what languages and structures are to prepare reader for the introduction of models,
theories, and axioms in section 3.
We start off with the definition of relations.

Definition 2.1. An n-ary relation R is a set of of n-tuples.

Usually relations describe a connection between the elements of the n-tuple. For example,
we can say that (x, y, z) is in 3-ary relation R if x | y | z, and x < y < z ≤ 6. Then triples
such as (1, 2, 4), (1, 3, 6) can be in relation R. Functions are relations too.

Now we can start with basic definitions of model theory.

Definition 2.2. A language L is specified by the following data:

(1) a set of function symbols F and positive integers nf for each f ∈ F ,
(2) a set of relation symbols R and positive integers nR for each R ∈ R, and
(3) a set of constant symbols C.
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Essentially a language L provides us with a set of symbols to which we can assign particular
functions, relations, and constants. Here nf , denotes the number of variables a function with
the symbol f should have. Analogously, nR, denotes the number of elements a relation with
the symbol R should have.

Example. Below are some examples of languages:

• The language of rings Lr = {+,−, ·, 0, 1}.
• The language of ordered rings Lor = Lr ∪ {<}.

Here +,−, ·, < are binary function symbols.

Definition 2.3. An L-structure M is specified by the following data:

(1) a non-empty set M called the universe or domain,
(2) a function fM :Mnf →M for each f ∈ F ,
(3) a relation RM ⊆MnR for each R ∈ R, and
(4) an element cM ∈M for each c ∈ C

In structure M, the function fM, relation RM, and constant cM are called the interpreta-
tions of symbols f,R and c respectively. We will denote a structure M by (M, fM, RM, cM :
f ∈ F , R ∈ R, c ∈ C).

Example. Rings are structures in the language Lr, where addition interprets +, subtraction
interprets − , multiplication interprets ·, additive identity interprets 0, and multiplicative
identity interprets 1.

Definition 2.4. Suppose M and N are L-structures with universes M and N respectively.
An L-embedding is a injective function σ : M → N that preserves the interpretation of all
symbols of L. Precisely:

(1) σ(fM(a1, a2, . . . , anf
)) = fN (σ(a1), σ(a2), . . . , σ(anf

)) for all f ∈ F and a1, a2, . . . , anf
∈

M
(2) (a1, a2, . . . , aRn) ⊆ RM iff (σ(a1), σ(a2), . . . , σ(aRn)) ⊆ RN for all R ∈ R and

a1, a2, . . . , anR
∈M

(3) σ(cM) = cN for all c ∈ C
If the function σ is bijective, then σ is called an L-isomorphism. If M ⊆ N and there exists
and embedding from M to N , then M is called a substructure of N , while N is called an
extension of M.

Example. (R, ·,≤, 1) is a substructure of (C, ·, 1). That is because the function σ(x) = x is
an embedding from (R, ·, 1) to (C, ·, 1). Indeed, the function σ is injective, and it satisfies
the following properties:

(1) The only function in (R, ·,≤, 1) is ·, and σ(a1 · a2) = a1 · a2 = σ(a1) · σ(a2)
(2) The only relation in (R, ·,≤, 1) is ≤, and a1 ≤ a2 iff σ(a1) ≤ σ(a2).
(3) σ(1) = 1.
(4) R ⊂ C.

σ(x) = x+ 1 is an isomorphism from (Z,+, 0) to (Z,+, 1).

We will now proceed to the introduction of the analogue of wffs in language L.

Definition 2.5. A set of L-terms is a set T such that:

(1) If c ∈ C, then c ∈ T ,
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(2) if vi is a variable symbol, then vi ∈ T , and
(3) if f ∈ F , and t1, t2, . . . , tnf

∈ T , then f(t1, t2, . . . , tnf
) ∈ T .

An element of T is called an L-term.

Thus, the set of terms contains only constants, variables, and expressions achieved by
applying functions on terms.

Definition 2.6. We say that ϕ is an L -atomic formula if either:

(1) ϕ = (t1 = t2) for some terms t1 and t2 , or
(2) ϕ = R(t1, t2, . . . , tnR

) for some R ∈ R and terms t1, t2, . . . , tnR
.

Therefore, atomic formulas are expressions achieved by applying relations on some terms.

Definition 2.7. The set of L-formulas is a set W that contains all atomic formulas and
such that:

(1) if ϕ ∈ W , then ¬ϕ ∈ W ,
(2) if ϕ, ψ ∈ W , then (ϕ ∧ ψ) and (ϕ ∨ ψ) are in W , and
(3) if ϕ ∈ W , then ∃v ϕ and ∀v ϕ are in W .

In other words, the set of L-formulas is the set of atomic formulas closed under operations
¬,∧,∨,∃v,∀v. L-formulas are the wffs of the language L.

Example. In the language Lor of ordered rings examples of Lor-formulas can be:

• v = 0 ∨ v > 0,
• ¬(v1 = v2), and
• ∃v2 v2 · v2 = v1.

Definition 2.8. We say that a variable v occurs freely in a formula if it is not inside a
quantifier ∃v or ∀v. Otherwise, we say that v is bound.

There is a particular type of L-formulas that is of a special interest in model theory.

Definition 2.9. An L-sentence is an L-formula in which none of the variables occurs freely.

In other words, in a sentence each variable occurs with a quantifier.

Example. Here are examples of a formula that is a sentence and a formula that does not
qualify to be a sentence.

• Formula ∀y ∃x (x2 = y) is a sentence, because both x and y have quantifiers.
• Formula ∃x (x2 = y) is not a sentence, because y does not have a quantifier.

Now, we will talk about sentences and formulas being true in a structure. Let M be an L-
structure and ϕ an L-formula. Suppose that v1, v2, . . . , vn are free variables of ϕ, then denote
v = (v1, v2, . . . , vn) to be an n-tuple of variables of ϕ. We write ϕ(v) = ϕ(v1, v2, . . . , vn) to
make explicit the free variables in ϕ. We will now rigorously define what it means M ⊨ ϕ,
or in other words, what it means for ϕ to be true in M.

Definition 2.10. Let ϕ(v1, v2, . . . , vn) be a formula with n free variables, and a = {a1, a2, . . . , an} ∈
Mn. Then M ⊨ ϕ(a) is inductively defined in the following way:

(1) If ϕ is an atomic formula and:
(a) If ϕ = (t1 = t2), then M ⊨ ϕ(a) iff tM1 (a) = tM2 (a).
(b) If ϕ = R(t1, t2, . . . , tnR

), then M ⊨ ϕ(a) iff t1(a), t2(a), . . . , tnR
(a)) ∈ RM.
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(2) If ϕ is another L-formula:
(a) If ϕ = ¬ψ, then M ⊨ ϕ iff M ⊭ ψ.
(b) If ϕ = (ψ ∧ ω), then M ⊨ ϕ iff M ⊨ ψ and M ⊨ ω.
(c) If ϕ = (ψ ∨ ω), then M ⊨ ϕ iff M ⊨ ψ or M ⊨ ω.
(d) If ϕ = ∃vj ψ(v, vj), then M ⊨ ϕ iff there exists b ∈M such that M ⊨ ψ(a, b).
(e) If ϕ = ∀vj ψ(v, vj), then M ⊨ ϕ iff M ⊨ ψ(a, b) for all b ∈M .

If M ⊨ ϕ(a) we can either say that M satisfies ϕ(a) or that ϕ(a) is true in M. Now, note
that if ϕ is an L-sentence, then ϕ does not have free variables, and thus M ⊨ ϕ or M ⊭ ϕ.
This means that an L-sentence is either true or false in a structure M.

Proposition 2.11. Suppose that M is a substructure of N , ϕ(v) is a quantifier-free formula,
and a ∈ Mm. Then M ⊨ ϕ(a) iff N ⊨ ϕ(a).

Proof. Before we use induction on formulas, we prove the proposition for terms.

Claim 2.12. If t(v) is a term, and b ∈ M, then tM(b) = tN (b).

This can be proved by induction on formulas:
Case 1. t is the constant symbol c ∈ C, then tM(b) = cM = cN = tN (b).
Case 2. t is the variable vi, then t

M(b) = bi = tN (b).
Case 3. t is the n-ary function symbol f(t1, t2, . . . , tn), where t1, t2, . . . , tn are terms. Then

from M ⊆ N we know that tMi (b) = tNi (b) for i = 1, 2, . . . , n, and fM = fN . Thus,

tM(b) = fM(tM1 (b), tM2 (b), . . . , tMn (b))

= f (N )(tM1 (b), tM2 (b), . . . , tMn (b))

= f (N )(tN1 (b), tN2 (b), . . . , tNn (b))

= tN (b).

Hence, we proved the claim. Now, we prove the proposition for atomic-formulas.
Case 1. ϕ = (t1 = t2), then

M ⊨ ϕ(a) ⇔ tM1 (a) = tM2 (a) ⇔ tN1 (a) = tN2 (a) ⇔ N ⊨ ϕ(a).

Case 2. ϕ = R(t1, t2, . . . , tn), then from our claim

M ⊨ ϕ(a) ⇔ (tM1 (a), tM2 (a), . . . , tMn (a)) ∈ RM

⇔ (tM1 (a), tM2 (a), . . . , tMn (a)) ∈ RN

⇔ (tN1 (a), tN2 (a), . . . , tNn (a)) ∈ RN

⇔ N ⊨ ϕ(a).

Thus, the proposition is true for all atomic formulas. Now, we are ready to prove that it
is true for other formulas by induction. Case 1. ϕ = ¬ψ and the proposition is true for ψ,
then

M ⊨ ϕ(a) ⇔ M ⊭ ψ(a) ⇔ N ⊭ ψ(a) ⇔ N ⊨ ϕ(a).
Case 2. ϕ = ψ0 ∧ ψ1 and the proposition is true for ψ0, ψ1, then

M ⊨ ϕ(a) ⇔ (M ⊨ ψ0(a)) ∧ (M ⊨ ψ1(a)) ⇔ (N ⊨ ψ0(a)) ∧ (N ⊨ ψ1(a)) ⇔ N ⊨ ϕ(a).

Because, the set of quantifier-free formulas is closed under ¬ and ∧ (see (2) in 2.13 below),
the proposition is true for all quantifier-free formulas. ■
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The proposition we just proved can be interpreted as “the formula is true in M iff it is
true in its extension N ”.

Remark 2.13. (1) Note that in formulas and sentences quantifiers only range over ele-
ments of structures and not sets of elements. This limitation of formulas to elements
is exactly what makes our logic first-order. Our specification to only first-order logic
is important in the context of geometry. This is explained in the last section of this
paper.

(2) From truth tables it can be seen that some formulas involving symbols ∨,→,↔,∀
are the same as formulas that do not have these symbols in them:

• ϕ→ ψ is an abbreviation for ¬ϕ ∨ ψ,
• ϕ↔ ψ is an abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ),
• ϕ ∨ ψ is an abbreviation for ¬(¬ϕ ∧ ¬ψ),
• ∀ϕ is an abbreviation for ¬(∃v¬ϕ).

Therefore, instead of considering formulas formed by all ¬,∧,∨,∃,∀ we can only
consider the formulas formed by ¬,∧, ∃. We will be using this fact in proofs, to
reduce the number of cases needed to be considered in induction on formulas.

Definition 2.14. We say that structures M and N are elementary equivalent (written
M ≡ N ) if

M ⊨ ϕ iff N ⊨ ϕ,
for all L-sentences ϕ.

Proposition 2.15. If there is an isomorphism from M to N , then M ≡ N .

Definition 2.16. Let T be a theory and ϕ be a sentence. We say that ϕ is a logical
consequence of T and write T ⊨ ϕ if M ⊨ ϕ whenever M ⊨ T .

3. Theories and models.

“Model theory is a study of relationship between theories and their models.”
To understand the statement above we define theories and models.

Definition 3.1. An L-theory T is a set of L-sentences.

Definition 3.2. We say that M is a model of a theory T (written M ⊨ T ) iff M ⊨ ϕ for
all ϕ ∈ T .

Some theories do not have models. For example the theory T = {∀x x = 0,∃x > 0} has
two contradictory sentences, which is why it does not have a model. We say that theories
that have models are satisfiable.

Definition 3.3. We say that a class K of L-structures is an elementary class if there is a
theory T such that K = {M :M ⊨ T}.

Often in model theory we are given a set of structures, which we want to describe by some
properties. In other words, we want to find a common theory of these structures. We call
the sentences of such theory axioms.

Example (Linear orders). Let L = {<}, where < is a binary relation symbol. The class of
linear orders is axiomatized by the sentences:

• ∀x¬(x < x),
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• ∀x¬(x < x),
• ∀x∀y∀z ((x < y ∧ y < z) → x < z),
• ∀x∀y (x < y ∨ x = y ∨ x > y).

The class of dense linear orders includes all the axioms above and

∀x∀y (x < y → (∃z (x < z ∧ z < y))).

Example (Graphs). Let L = {R}, where R is a binary relation which means that two vertices
are connected. We can axiomatize the class of irreflexible graphs (i.e. no vertex is connected
to itself) by two axioms.

• ∀x ¬R(x, x),
• ∀x∀y (R(x, y) → R(y, x)).

4. Main tools of model theory.

Some theorems play an important role in the whole model theory, and they are applied
to prove many results not only in logic, but in abstract algebra, computer science, and
geometry. To name a few of such theories, we have Godel’s Completeness theorem and the
Compactness theorem. Though, of the main interest to us is one of the results that says that
if a theory T satisfies certain conditions, then T is decidabile.

We start with the formal definition of proof.

Definition 4.1. A proof of ϕ from theory T is a finite sequence of L-formulas ψ1, ψ2, . . . , ψm

such that ψm = ϕ and ψi ∈ T or ψi follows from ψ1, ψ2, . . . , ψi−1 by a simple logical rule for
each i. We write T ⊢ if there is a proof of ϕ from T and say that ϕ is deducible from T .

Some important points about proofs:

• Proofs are finite.
• (Soundness) If T ⊢ ϕ, then T ⊨ ϕ
• If T is a finite set of sentences, then there is an algorithm that, when given a sequence
of L-formulas σ and an L-sentence ϕ, will decide whether σ is a proof of ϕ from T .

Definition 4.2. An L-language is called recursive if there exists an algorithm that decides
whether a sequence of symbols is an L-formula.

We say that an L-theory T is recursive if there is an algorithm that, when given an
L-sentence ϕ as input, decides whether ϕ ∈ T .

Proposition 4.3. If L is a recursive language and T is a recursive L-theory, then the set
{ϕ : T ⊢ ϕ} is recursively enumerable. This means that there is an algorithm, that given ϕ
as input will stop accepting T ⊢ ϕ and not stop if T ̸⊢ v.

Proof. There is σ0, σ1, . . . , a computable listing of all finite sequences of L-formulas. At
stage i of our algorithm, we check to see whether σi is a proof of ϕ from T . This involves
checking that each formula either is in T (which we can check because T is recursive) or
follows by a logical rule from earlier formulas in the sequence σi and that the last formula
is ϕ. If σi is a proof of ϕ from T , then we halt accepting; otherwise we go on to stage i+ 1.
We now, get to a very surprising and important result.

Theorem 4.4 (Godel’s Completeness theorem). Let T be an L-theory and ϕ be an L-
sentence. Then T ⊨ ϕ iff T ⊢ ϕ.
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One direction of this theorem is intuitively true: if ϕ is deducible from T , then ϕ is true
whenever T is true. However, the other direction is not that obvious, and it informally says
that, if you look at a truth table of a theory and see that a sentence is true whenever the
theory is true, then the statement should be deducible from the theory.

The Completeness theorem provides us with a criterion that checks whether a theory T is
satisfiable. But for that criterion we need another important definition in model theory.

Definition 4.5. We say that theory T is inconsistent if there is a sentence ϕ such that
T ⊢ {ϕ ∧ ¬ϕ}. If there is no such sentence ϕ, we say that T is consistent.

Corollary 4.6. T is satisfiable iff T is consistent.

Proof. Suppose we have a satisfiable theory T and a sentence ϕ such that T ⊨ ϕ, then
note that we cannot have that T ⊨ ¬ϕ from the definition of logical consequence (there is no
M such that M ⊨ ϕ and M ⊨ ¬ϕ). Hence, from soundness of proofs there does not exists
a sentence ϕ such that T ⊢ ϕ and T ⊢ ¬ϕ, because otherwise from soundness we would get
that T ⊨ ϕ and T ⊨ ¬ϕ. Hence, if T is satisfiable, then T is consistent.

Now, suppose we have a consistent theory T . We will prove by contradiction that T should
be satisfiable. Suppose T is not satisfiable, then there is a sentence ϕ such that every model
of T is a model of ϕ ∧ ¬ϕ. Hence, T ⊨ (ϕ ∧ ¬ϕ), but by the completeness theorem it would
mean that T ⊢ (ϕ ∧ ¬ϕ), i.e. that T is inconsistent. This is a contradiction. Hence, if T is
consistent, then T is satisfiable. ■

Completeness theorem also proves one of the main theorems in model theory.

Theorem 4.7 (Compactness theorem). T is satisfiable iff every finite subset of T is satis-
fiable.

Proof. It is obvious that if T is satisfiable, then its finite subsets are satisfiable too.
Now suppose that every finite subset of T is satisfiable, while T is not. Then by 4.6 T is

inconsistent, and there exists a sequence of formulas σ, which is a proof of ϕ ∧ ¬ϕ for some
sentence ϕ (i.e. a proof of a contradiction). Since σ is finite, all the formulas of it are derived
from a finite set of assumptions (sentences) which we will denote as T0. Hence, σ is a proof
of contradiction from T0, which means that T0 is inconsistent. But then from the 4.6, T0 is
not satisfiable, which is a contradiction to our assumption. Thus, if all finite subsets of T
are satisfiable, then T is satisifable too. ■

5. Axioms of fields and real numbers

To prove that Tarski’s system of geometry is decidable, we will need to work with the
theory of Real closed fields (written as RCF). To understand RCF, we need to have some
background knowledge about groups, rings, fields, and ordered fields.

5.1. Axioms of groups. The classes of groups and different types of groups such as rings,
ordered rings, and fields are of the most importance for our paper. Note that almost all of
the following axioms are used to define the structures when we first read about them.

Let L = {∗, e}, where ∗ is a binary function symbol, and e is a constant symbol. The class
of groups is axiomatized by

• ∀x x ∗ e = e ∗ x,
• ∀x∀y∀z x ∗ (y ∗ z) = (x ∗ y) ∗ z,
• ∀x∃y x ∗ y = y ∗ x = e.
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For the class of Abelian (commutative) groups we should add ∀x∀y x ∗ y = y ∗ x.
We will often deal with the class of additive groups, which are axiomatized by replacing ∗

with + and e with 0.
Now, we can axiomatize the class of ordered additive commutative groups. Let L = {+, <

, 0}, then the axioms for ordered commutative groups are

• axioms for additive groups,
• axioms for linear orders, and
• ∀x∀y∀z(x < z → x+ z < y + z).

In the section 2, we already talked about the language rings as an example of language. Now
we will axiomatize the class of rings.

Let Lr = {+,−, ·, 0, 1} be the language of rings, then the axioms for the class of rings are
given by

• axioms for additive commutative groups
• ∀x x · 0 = 0
• ∀x x · 1 = x
• ∀x∀y∀z (x− y = z ↔ x = y + z)
• ∀x∀y∀z ((x · y) · z = x · (y · z))
• ∀x∀y∀z x · (y + z) = (x · y) + (x · z)
• ∀x∀y∀z (x+ y) · z = (x · z) + (y · z).

It is important to notice that rings are commutative under +, but not necessarily under ·.
The class of fields is axiomatized by

• axioms for rings,
• ∀x∀y x · y = y · x, and
• ∀x(x ̸= 0 → ∃y x · y = 1).

Let Lor = {+,−, ·, <, 0, 1} be the language of ordered rings. Then the class of ordered
fields is axiomatized by:

• axioms for fields,
• axioms for linear orders,
• ∀x∀y∀z (x < y → x+ z < y + z), and
• ∀x∀y∀z ((x < y ∧ z > 0) → x · z < y · z).

5.2. Axioms of real numbers. Let L = {R,+, ·, < 0, 1}. The class of real numbers is
axiomatized by:

• axioms for fields,
• axioms for linear orders, and
• Dedekind completeness.

6. Elimination of Quantifiers.

Definition 6.1. An L-theory T has elimination of quantifiers if for every formula ϕ there
is a quantifier-free formula ψ such that

T ⊨ ϕ↔ ψ.

Example. Let ϕ(a, b, c) be the formula

∃x ax2 + bx+ c = 0.
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Then from quadratic equations we know that

R ⊨ ϕ↔ [(a ̸= 0 ∧ b2 − 4ac ≥ 0) ∨ (a = 0 ∧ (b ̸= 0 ∨ c = 0)].

Thus, we managed to find a quantifier free formula equivalent to R ⊨ ϕ.

We will now provide a model-theoretic criterion for quantifier elimination.

Theorem 6.2. Suppose L is a language that contains a constant symbol c, T is an L-theory,
and ϕ(v) is an L-formula. The following statements are equivalent:

(1) There is a quantifier-free L-formula ψ(v) such that T ⊨ ∀v (ϕ(v) ↔ ψ(v)).
(2) If M and N are models of T , A is an L-structure, A ⊆ M, and A ⊆ N then

M ⊨ ϕ(a) iff N ⊨ ϕ(a) for all a ∈ A.

Proof. (1) ⇒ (2), Suppose that there exists quantifier-free ψ(v) such that T ⊨ ∀v (ϕ(v) ↔
ψ(v)). Let a ∈ A, where A is a common substructure of M and N , which are models of
theory T . In 2.11 we saw that quantifier-free formulas are preserved under substructure and
extension. Thus,

M ⊨ ϕ(a) ⇔ M ⊨ ψ(a)
⇔ A ⊨ ψ(a) (because A ⊆ M)
⇔ N ⊨ ψ(a) (because A ⊆ N )

⇔ N ⊨ ϕ(a).
(2) ⇒ (1), First, if T ⊨ ∀v ϕ(v), then T ⊨ ∀v (ϕ(v) ↔ c = c). If T ⊨ ∀v ¬ϕ(v), then
T ⊨ ∀v (ϕ(v) ↔ c ̸= c).
Thus, we may assume that both T ∪ {ϕ(v)} and T ∪ {¬ϕ(v)} are satisfiable.
Let Γ(v) = {ψ(v) : ψ is a quantifier-free formula and T ⊨ ∀v (ϕ(v) → ψ(v))}. Then, by

compactness, there are ψ1, ψ2, . . . , ψn ∈ Γ such that

T ⊨ ∀v (
n∧

i=1

ψi(v) → ϕ(v)).

Thus,

T ⊨ ∀v (
n∧

i=1

ψi(v) ↔ ϕ(v)),

and (
∧n

i=1 ψi(v) is quantifier-free. We need only to prove the following claim.

Claim 6.3. Let d1, d2, . . . , dm be new constant symbols. Then T ∪ Γ(d) ⊨ ϕ(d).

7. Real closed fields

8. Tarski’s system of geometry
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