Complex Lie Algebras

Arpit Mittal

Euler Circle

2022

Contact: arpit.mittal.2.71@gmail.com

Arpit Mittal (Euler Circle)

Arpit Mittal (Euler Circle)

イロト イヨト イヨト イヨト

2022

æ

- Lie Algebras
- 2 Representation Theory

< ∃⇒

• • • • • • • • • •

æ

Contents

- Lie Algebras
- 2 Representation Theory
- Nilpotency

2/18

→ ∃ →

• • • • • • • • • •

Contents

- Lie Algebras
- Representation Theory
- Olipotency
- Root Systems and Diagrams

2/18

∃ >

Contents

- Lie Algebras
- Representation Theory
- Olipotency
- Root Systems and Diagrams
- Surprise!

2/18

∃ >

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie algebra is the tangent space to a Lie group at the identity.

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie algebra is the tangent space to a Lie group at the identity.

Lie algebra for every Lie group

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie algebra is the tangent space to a Lie group at the identity.

- Lie algebra for every Lie group
- Iie group for (almost) every Lie algebra!

Theorem (Lie's Third)

For each Lie algebra \mathfrak{g} over \mathbb{R} , there is an associated Lie group G.

Visual Lie Algebra

Figure. Lie Algebra of a Lie Group

Lie Algebras

Definition

A Lie algebra \mathfrak{g} over a commutative field \mathbb{F} is a vector space equipped with an operation $[.,.]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ for which the following axioms hold:

• The operation [., .] is bilinear.

2 For all
$$x \in \mathfrak{g}, [x, x] = 0$$

So For all
$$x, y \in \mathfrak{g}, [x, y] = -[y, x]$$
.

• For all $x, y, z \in \mathfrak{g}, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$

Example

The general Lie algebra $\mathfrak{gl}(V)$ is the vector space of all endomorphisms of V (linear maps from V to itself), with Lie bracket [x, y] = xy - yx for all $x, y \in \mathfrak{gl}(V)$.

Lie Subalgebra

Definition

A Lie subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is a vector subspace of \mathfrak{g} where for all $x, y \in \mathfrak{h}, [x, y] \in \mathfrak{h}$.

Lie Subalgebra

Definition

A Lie subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is a vector subspace of \mathfrak{g} where for all $x, y \in \mathfrak{h}, [x, y] \in \mathfrak{h}$.

Example

Another lie algebra is the algebra $\mathfrak{sl}(2,\mathbb{C})$, the special linear algebra of dimension 2. This is defined to be all two dimensional matrices over \mathbb{C} containing trace 0. To show that this is a subalgebra of $\mathfrak{gl}(2,\mathbb{C})$, we have

$$Tr([x, y]) = Tr(xy - yx)$$

= Tr(xy) - Tr(yx)
= 0.

An Ideal *I* of a Lie algebra \mathfrak{g} is a subalgebra of \mathfrak{g} where for all $x \in I$ and $y \in \mathfrak{g}, [x, y] \in I$.

An Ideal *I* of a Lie algebra \mathfrak{g} is a subalgebra of \mathfrak{g} where for all $x \in I$ and $y \in \mathfrak{g}, [x, y] \in I$.

Definition

A Lie algebra \mathfrak{g} is simple if it does not have any ideals besides 0 and \mathfrak{g} . Additionally, \mathfrak{g} cannot be commutative, ie; it cannot be true that [x, y] = 0 for all $x, y \in \mathfrak{g}$.

8/18

A linear transformation $\phi:\mathfrak{g}\to\mathfrak{h}$ between two Lie algebras is said to be a Lie homomorphism if

$$\phi([x,y]) = [\phi(x),\phi(y)]$$

for all $x, y \in \mathfrak{g}$.

A linear transformation $\phi:\mathfrak{g}\to\mathfrak{h}$ between two Lie algebras is said to be a Lie homomorphism if

$$\phi([x,y]) = [\phi(x),\phi(y)]$$

for all $x, y \in \mathfrak{g}$.

Definition

A representation of a Lie algebra is a Lie homomorphism $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$ where both \mathfrak{g} and V are vector spaces over \mathbb{F} .

Reducible Representations

Definition

For a representation of a Lie algebra $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$, a subspace W of V is invariant if $\phi(x)w \in W$ for $w \in W$ and $x \in \mathfrak{g}$.

Reducible Representations

Definition

For a representation of a Lie algebra $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$, a subspace W of V is invariant if $\phi(x)w \in W$ for $w \in W$ and $x \in \mathfrak{g}$.

Definition

A Lie algbera is irreducible if its only invariant subspaces are V and the zero space.

Theorem (Weyl)

For a semisimple Lie algebra \mathfrak{g} and a finite representation ϕ , ϕ is the direct sum of irreducible representations.

Adjoints

Definition

The adjoint of an element x in a Lie algebra \mathfrak{g} is the map ad $x : \mathfrak{g} \to \mathfrak{g}$ defined by ad x(y) = [x, y] for all $y \in \mathfrak{g}$.

Definition

The adjoint representation of a Lie algebra is the map that sends each element of a Lie algebra to its adjoint. In other words, the adjoint representation is the map ad : $\mathfrak{g} \to \mathfrak{gl}(V)$ defined by $\operatorname{ad}(x) = \operatorname{ad} x$ for all $x \in \mathfrak{g}$. The image of ad is denoted as $\operatorname{ad}(\mathfrak{g})$.

11/18

Adjoints

Definition

The adjoint of an element x in a Lie algebra \mathfrak{g} is the map ad $x : \mathfrak{g} \to \mathfrak{g}$ defined by ad x(y) = [x, y] for all $y \in \mathfrak{g}$.

Definition

The adjoint representation of a Lie algebra is the map that sends each element of a Lie algebra to its adjoint. In other words, the adjoint representation is the map ad : $\mathfrak{g} \to \mathfrak{gl}(V)$ defined by $\operatorname{ad}(x) = \operatorname{ad} x$ for all $x \in \mathfrak{g}$. The image of ad is denoted as $\operatorname{ad}(\mathfrak{g})$.

Definition

If ${\mathfrak g}$ is semisimple, its roots are the nonzero eigenvalues of its adjoint representation.

The descending central series of a Lie algebra \mathfrak{g} is the series

$$\mathfrak{g}^{0} = \mathfrak{g}, \ldots, \mathfrak{g}^{i} == [\mathfrak{g}, \mathfrak{g}^{i-1}].$$

A lie algebra \mathfrak{g} is nilpotent if there exists some *n* such that $\mathfrak{g}^n = 0$.

Lemma

If \mathfrak{g} is a subalgebra of $\mathfrak{gl}(V)$ consisting of only nilpotent endomorphisms, there exists some nonzero $v \in V$ such that [x, v] = 0 for all $x \in \mathfrak{g}$.

Theorem (Engel)

If all elements of a Lie algbera \mathfrak{g} are ad-nilpotent, ie; there exists some n such that $\operatorname{ad}^n(x) = 0$, then \mathfrak{g} is nilpotent.

A subset $\Phi \subset E$ for Euclidian space E is a root system in E if • Φ if a nonzero finite subset and spans E

A subset $\Phi \subset E$ for Euclidian space E is a root system in E if

- Φ if a nonzero finite subset and spans E
- **2** If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant

A subset $\Phi \subset E$ for Euclidian space E is a root system in E if

- Φ if a nonzero finite subset and spans E
- **2** If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant
- $If \alpha, \beta \in \Phi,$

 $\langle \beta, \alpha \rangle \in \mathbb{Z}$

A Cartan subalgbera is a nilpotent subalgebra of a Lie algebra that is "self-normalizing."

A Cartan subalgbera is a nilpotent subalgebra of a Lie algebra that is "self-normalizing."

Definition

Let \mathfrak{c} be a Cartan subalgebra of a semisimple Lie algbera \mathfrak{g} . An element $r \in \mathfrak{c}^*$ is a root of \mathfrak{g} relative to \mathfrak{c} if there exists some $x \in \mathfrak{g}$ such that [y, x] = r(y)x for all $y \in \mathfrak{c}$.

15/18

The Dynkin Diagram corresponding to a root system Φ is created by first drawing a node \circ for each [simple] root of Φ . The number of lines connecting two roots x and y is $2\cos(\theta) \frac{\|y\|}{\|x\|}$.

Each semisimple Lie algebra has a dynkin diagram of the following:

- 3 ▶

э

Thank you!

Arpit Mittal (Euler Circle) Complex Lie Algebras