Complex Lie Algebras

Arpit Mittal

Euler Circle

2022

Contact: <arpit.mittal.2.71@gmail.com>

Arpit Mittal (Euler Circle) **[Complex Lie Algebras](#page-32-0)** 2022 1/18

4 0 8 4

重

 $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$

K ロ ▶ K 御 ▶ K 舌

- **1** Lie Algebras
- ² Representation Theory

重

 $\rightarrow \equiv$ \rightarrow

K ロ ▶ K 倒 ▶

э

 -4 D. 299

- **1** Lie Algebras
- ² Representation Theory
- ³ Nilpotency

重

 \rightarrow \equiv \rightarrow

K ロ ▶ K 倒 ▶

Þ

 \sim D.

Contents

- **1** Lie Algebras
- ² Representation Theory
- **3** Nilpotency
- ⁴ Root Systems and Diagrams

4 0 F

≘⇒ ∍ 298

Contents

- **1** Lie Algebras
- ² Representation Theory
- **3** Nilpotency
- ⁴ Root Systems and Diagrams
- **5** Surprise!

4 0 F

∍∍ ∍ 298

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie algebra is the tangent space to a Lie group at the identity.

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie algebra is the tangent space to a Lie group at the identity.

1 Lie algebra for every Lie group

Definition

A Lie group is a group that is also a finite smooth manifold such that the operations of multiplication and inversion are smooth.

Definition

A Lie algebra is the tangent space to a Lie group at the identity.

- **1** Lie algebra for every Lie group
- 2 Lie group for (almost) every Lie algebra!

Theorem (Lie's Third)

For each Lie algebra α over $\mathbb R$, there is an associated Lie group G.

Visual Lie Algebra

Figure. Lie Algebra of a Lie Group

4 D F

Lie Algebras

Definition

A Lie algebra g over a commutative field $\mathbb F$ is a vector space equipped with an operation $[.,.]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ for which the following axioms hold:

 \bullet The operation $[.,.]$ is bilinear.

$$
2 \tFor all $x \in \mathfrak{g}, [x, x] = 0.$
$$

• For all
$$
x, y \in \mathfrak{g}, [x, y] = -[y, x]
$$
.

• For all $x, y, z \in \mathfrak{g}, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$

Example

The general Lie algebra $\mathfrak{gl}(V)$ is the vector space of all endomorphisms of V (linear maps from V to itself), with Lie bracket $[x, y] = xy - yx$ for all $x, y \in \mathfrak{gl}(V)$.

Lie Subalgebra

Definition

A Lie subalgebra $\mathfrak h$ of a Lie algebra $\mathfrak g$ is a vector subspace of $\mathfrak g$ where for all $x, y \in \mathfrak{h}, [x, y] \in \mathfrak{h}.$

4 0 8

Lie Subalgebra

Definition

A Lie subalgebra $\mathfrak h$ of a Lie algebra $\mathfrak g$ is a vector subspace of $\mathfrak g$ where for all $x, y \in \mathfrak{h}, [x, y] \in \mathfrak{h}.$

Example

Another lie algebra is the algebra $\mathfrak{sl}(2,\mathbb{C})$, the special linear algebra of dimension 2. This is defined to be all two dimensional matrices over $\mathbb C$ containing trace 0. To show that this is a subalgebra of $\mathfrak{gl}(2,\mathbb{C})$, we have

$$
Tr([x, y]) = Tr(xy - yx)
$$

= Tr(xy) - Tr(yx)
= 0.

An Ideal *I* of a Lie algebra g is a subalgebra of g where for all $x \in I$ and $y \in \mathfrak{g}, [x, y] \in I$.

4 D F

An Ideal I of a Lie algebra g is a subalgebra of g where for all $x \in I$ and $y \in \mathfrak{g}, [x, y] \in I$.

Definition

A Lie algebra g is simple if it does not have any ideals besides 0 and g. Additionally, g cannot be commutatitve, ie; it cannot be true that $[x, y] = 0$ for all $x, y \in \mathfrak{g}$.

A linear transformation $\phi : \mathfrak{g} \to \mathfrak{h}$ between two Lie algebras is said to be a Lie homomorphism if

$$
\phi([x,y])=[\phi(x),\phi(y)]
$$

for all $x, y \in \mathfrak{g}$.

4 0 8

 200

A linear transformation $\phi : \mathfrak{g} \to \mathfrak{h}$ between two Lie algebras is said to be a Lie homomorphism if

$$
\phi([x,y])=[\phi(x),\phi(y)]
$$

for all $x, y \in \mathfrak{g}$.

Definition

A representation of a Lie algebra is a Lie homomorphism $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$ where both g and V are vector spaces over \mathbb{F} .

Reducible Representations

Definition

For a representation of a Lie algebra $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$, a subspace W of V is invariant if $\phi(x)w \in W$ for $w \in W$ and $x \in \mathfrak{g}$.

Reducible Representations

Definition

For a representation of a Lie algebra $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$, a subspace W of V is invariant if $\phi(x)w \in W$ for $w \in W$ and $x \in \mathfrak{g}$.

Definition

A Lie algbera is irreducible if its only invariant subspaces are V and the zero space.

Theorem (Weyl)

For a semisimple Lie algebra g and a finite representation ϕ , ϕ is the direct sum of irreducible representations.

Adjoints

Definition

The adjoint of an element x in a Lie algebra α is the map ad $x : \mathfrak{g} \to \mathfrak{g}$ defined by ad $x(y) = [x, y]$ for all $y \in \mathfrak{g}$.

Definition

The adjoint representation of a Lie algebra is the map that sends each element of a Lie algebra to its adjoint. In other words, the adjoint representation is the map ad : $\mathfrak{g} \to \mathfrak{gl}(V)$ defined by $ad(x) = ad x$ for all $x \in \mathfrak{g}$. The image of ad is denoted as $ad(\mathfrak{g})$.

Adjoints

Definition

The adjoint of an element x in a Lie algebra α is the map ad $x : \mathfrak{g} \to \mathfrak{g}$ defined by ad $x(y) = [x, y]$ for all $y \in \mathfrak{g}$.

Definition

The adjoint representation of a Lie algebra is the map that sends each element of a Lie algebra to its adjoint. In other words, the adjoint representation is the map ad : $\mathfrak{g} \to \mathfrak{gl}(V)$ defined by $ad(x) = ad x$ for all $x \in \mathfrak{g}$. The image of ad is denoted as $ad(\mathfrak{g})$.

Definition

If g is semisimple, its roots are the nonzero eigenvalues of its adjoint representation.

The descending central series of a Lie algebra g is the series

$$
\mathfrak{g}^0 = \mathfrak{g}, \ldots, \mathfrak{g}^i = = [\mathfrak{g}, \mathfrak{g}^{i-1}].
$$

A lie algebra g is nilpotent if there exists some n such that $g^n = 0$.

4 0 8

Lemma

If $\mathfrak g$ is a subalgebra of $\mathfrak{gl}(V)$ consisting of only nilpotent endomorphisms, there exists some nonzero $v \in V$ such that [x, v] = 0 for all $x \in \mathfrak{a}$.

Theorem (Engel)

If all elements of a Lie algbera g are ad-nilpotent, ie; there exists some n such that $ad^n(x) = 0$, then $\mathfrak g$ is nilpotent.

A subset $\Phi \subset E$ for Euclidian space E is a root system in E if \bullet \bullet if a nonzero finite subset and spans E

4 D F

A subset $\Phi \subset E$ for Euclidian space E is a root system in E if

- \bullet \bullet if a nonzero finite subset and spans E
- **2** If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant

4 0 8

A subset $\Phi \subset E$ for Euclidian space E is a root system in E if

- \bullet \bullet if a nonzero finite subset and spans E
- **2** If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant
- **3** If $\alpha, \beta \in \Phi$,

 $\langle \beta, \alpha \rangle \in \mathbb{Z}$

4 0 8

A Cartan subalgbera is a nilpotent subalgebra of a Lie algebra that is "self-normalizing."

イロト

A Cartan subalgbera is a nilpotent subalgebra of a Lie algebra that is "self-normalizing."

Definition

Let c be a Cartan subalgebra of a semisimple Lie algbera g. An element $r \in \mathfrak{c}^*$ is a root of $\mathfrak g$ relative to $\mathfrak c$ if there exists some $x \in \mathfrak g$ such that $[y, x] = r(y)x$ for all $y \in \mathfrak{c}$.

The Dynkin Diagram corresponding to a root system Φ is created by first drawing a node \circ for each [simple] root of Φ . The number of lines connecting two roots x and y is 2 cos $(\theta) \frac{\|y\|}{\|y\|}$ $\frac{\|y\|}{\|x\|}$.

Each semisimple Lie algebra has a dynkin diagram of the following:

- イ ヨート

4 0 8

э

Thank you!

