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Abstract. In this paper, we define Lie algebras and prove interesting theorems pertaining
to their nilpotency and solvability. We then define semisimple Lie algebras and study their
representations, root spaces, and root systems. We conclude with an outline for the proof
of the classification theorem.
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1. Introduction

In the 1800s, Sophus Lie studied Lie groups to model the symmetries of equations.

Definition 1.1. A Lie group is a finite real smooth manifold that is also a group. The
operations of multiplication and inversion are smooth maps.

To obtain a Lie algebra, one takes the tangent space to the manifold at its identity, e.
The tangent space came with a bilinear operation which became known as the Lie bracket.
It turns out that Lie algebras have many properties and associated structures analgogous
to rings. For example, for a Lie algebra g with the bracket operation [., .] : g × g → g, an
ideal of g is a subspace I that is closed under the bracket operation and has [x, y] ∈ I for all
x ∈ I and y ∈ g. A simple Lie algebra is defined as an algebra with its only ideals being 0
and itself. Furthermore, a semisimple Lie algebra is defined as an algebra with having only
the trivial solvable ideal. It was shown that this criterion for a semisimple Lie algebra is
equivalent to the definition of a semisimple Lie algebra being the direct sum of simple Lie
algebras. Wilhelm Killing and Elie Cartan studied the representation of simple Lie algebras
and were able to classify the real simple Lie algebras and study their representation theory.
It turned out that one could decompose a Lie algebra into “roots” in Euclidian space. From
here, diagrams were created to model Lie algebras, named after the mathematician Eugene
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Dynkin. A beautiful theorem classified the Dynkin diagrams of simple Lie algebras into one
of 9 types as shown.
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The theorem as well as some of the key steps to proving it are included in this paper. Finally,
we assume a working-knowledge of linear algebra at the knowledge of a first course. In the
second section, we define Lie algebras and discuss various constructions associated with
them. In the third section, we define solvability and nilpotency of Lie algebras and prove
Engel’s theorem as well as Lie’s theorem. In the fourth section, we define representations of
Lie algebras and examine the representations of one important simple Lie algebra. In the
fifth section, we show how to decompose a Lie algebra into a root space. In the sixth section,
we consider root systems in Euclidian space and describe their interconenctedness with Lie
algebras. In the final section, we state and outline the proof of the classification theorem for
simple Lie algebras.

2. Preliminaries

Definition 2.1. A Lie algebra g over a commutative field F is a vector space equipped with
an operation [., .] : g× g → g for which the following axioms hold:

(1) For all w, x, y, z ∈ g, [w + λx, y + µz] = [w, y + µz] + [λx, y + µz] = [w, y] + µ[w, z] +
λ[x, y] + λµ[x, z] where λ, µ ∈ F.

(2) For all x ∈ g, [x, x] = 0.
(3) For all x, y ∈ g, [x, y] = −[y, x].
(4) For all x, y, z ∈ g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The bracket operation is referred to as the Lie bracket for g.

In other words, the Lie bracket is a bilinear map that is alternativity, anti-commutativity,
and the Jacobi identity. One common misconception about Lie algebras is that their Lie
bracket is associative, similar to groups. However, as this is not implied from the axioms, it
is not nessecarily true that the Lie bracket is associative. We can also see that axiom (3) is
implied from axiom (2) by calculating [x+y, x+y] = [x, x]+[x, y]+[y, x]+[yy] = [x, y]+[y, x].
By axiom (2), this must be equal to 0 which implies axiom (3). It is therefore redundant to
include axiom (3) but we do so anyways to remind ourselves of this property. One may also
wonder if axiom (3) implies axiom (2). Unassuming axiom (2), we have [x, x] = −[x, x]. This
then implies that 2[x, x] = 0 which gives [x, x] = 0 if charF ̸= 2. From here on, all fields F
that we mention are taken to be commutative. We also assume F to have characteristic zero.

Example. Let g = R3 and [., .] be the cross product. To show that this is a Lie algebra,
we must display that each of the axioms holds for it. Axioms (1) and (2) are well known
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properties of the cross product. Since (2) implies (3) we do not need to show (3). For the
Jacobi identity, note that if we show that it holds for the standard basis vectors of R3, it
must hold for all other vectors in R3 due to bilinearity. Letting e1, e2, e3 denote the standard
basis vectors of R3, we have

e1 × (e2 × e3) + e2 × (e3 × e1) + e3 × (e1 × e2) = 0 + 0 + 0 = 0.

Example. Consider g to be C with the bracket operation representing addition, ie; [z, w] =
z+w for all z, w ∈ g. Then, the bracket operation is clearly not bilinear, as [a+λb, c+µd] =
(a+ λb) + (c+ µd) = [a, c] + [λb, µd]. Thus, g is not a Lie algebra.

Example. Consider the vector space gl(V ), the vector space of all endomorphisms of a vector
space V over F. We define [x, y] = xy−yx for all x, y ∈ gl(V ) where multiplication represents
composition. As endomorphisms can be considered matrices by fixing a basis, we may also
write gl(V ) are gl(n,F), n by n matrices over F, where n = dim(V ). We could then take the
bracket operation to be represent matrix multiplication rather than compoisiton. To show
that this is a Lie algebra, axioms one and two are trivial. For the Jacobi identity, we see
that

[x, [y, z]] + [y, [z, z]] + [z, [x, y]] = [x, yz − zy] + [y, zx− xz] + [z, xy − yx]

= x(yz − zy)− (yz − zy)x+ y(zx− xz)

− (zx− xz)y + z(xy − yx)− (xy − yx)z

= 0

for all x, y, z ∈ g.

Proposition 2.2. For a Lie algebra g,

[x, 0] = 0 = [0, x]

for all x ∈ g.

Proof. By the fact that [., .] is bilinear, we have

[x, 0] = [x, (0 · x)] = 0[x, x] = 0

and
[0, x] = [(0 · x), x] = 0[x, x] = 0.

■

Definition 2.3. A Lie subalgebra h of a Lie algebra g is a vector subspace of g where for
all x, y ∈ h, [x, y] ∈ h.

Note that a subalgebra of a Lie algebra has the same bracket structure as the original Lie
algebra.

Example. Another lie algebra is the algebra sl(2,C), the special linear algebra of dimension
2. This is defined to be all two dimensional matrices over C containing trace 0. To show that
this is a subalgebra of gl(2,C), we have

Tr([x, y]) = Tr(xy − yx)

= Tr(xy)− Tr(yx)

= 0.
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This implies that for all elements in sl(2,C), applying the inherited bracket operation from
the general linear algebra returns an endomorphism with trace 0, hence an element of sl(2,C).
Let us now try to compute the dimension for this algebra. Letting eij be the 2 × 2 matrix
with a 1 in the ith row and jth column and a 0 elsewhere, we can take the standard basis
in sl(2,C) to be

e11 − e22 =

[
1 0
0 −1

]
, e12 =

[
0 1
0 0

]
, e21 =

[
0 0
1 0

]
So, the dimension of sl(2,C) is 3. We should now consider generalizing this algebra to
matrices (or endomorphisms, depending on what term you are more comfortable with), of
arbritary dimension n.

Example. The algebra sl(n,F) is defined to be all endomorphisms from an n−dimensional
endomorphisms of a vector space V over F with trace 0. We have that sl(n,F) is a subalgebra
of gl(n,F) by the same reasoning from sl(2,C). Taking inspiration from the algebra sl(2,F),
we should attempt to find a basis in sl(n,F) and then the dimension. We note elements
not along the main diagonal of a matrix in sl(n,F) may be arbitary, as they do not impact
the trace. So, matrices of the form eij for 1 ≤ i ̸= j ≤ n are part of the standard basis of
sl(2,F). Now, the matrices with nonzero diagnoal entries and all other elements being 0 can
be spanned by eij − ei+ 1, j + 1 for 1 ≤ i ≤ n− 1. Thus, combining these two sets, we have
the standard basis of sl(n,F) as

B =

{
eij 1 ≤ i ̸= j ≤ n

eij − ei+1,j+1 1 ≤ i ≤ n− 1

The dimension of sl(n,F) is n(n− 1) + (n− 1) = n2 − 1.

One important theorem, the proof of which is out of the scope of the paper, states that
each Lie algebra g can be thought of as matrices over F using the bracket [x, y] = xy − yx
for all x, y ∈ g. More precisely, the theorem states:

Theorem 2.4 (Ado). Every finite Lie algebra is isomorphic to a finite general linear algebra.

Although we are unable to prove this theorem, an interested reader may find it in [Swa].

Definition 2.5. If g and h are Lie algebras, their direct sum g⊕ h is the vector space direct
sum with Lie bracket restricting to [., .]g and [., .]h with [g, h] = 0.

One very special subalgebra is the ideal of a Lie algebra. Its definition is analogous to the
one for an ideal of a ring and thus has similar consequences.

Definition 2.6. An Ideal I of a Lie algebra g is a subalgebra of g where for all x ∈ I and
y ∈ g, [x, y] ∈ I.

Definition 2.7. A Lie algebra g is simple if it does not have any ideals besides 0 and g.
Additionally, g cannot be commutative (abelian), ie; it cannot be true that [x, y] = 0 for all
x, y ∈ g.

Example. Consider the special linear algebra of dimension 2, sl(2,F). We wish to show that
this is simple. Recall the standard basis we constructed for sl(2,F). We can denote

A = e11 − e22, B = e12, C = e21.
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Taking the inherited Lie bracket from gl(2,F) we get

[A,B] = 2B, [A,C] = −2C, [B,C] = A.

Now, because B = {A,B,C} is a basis in sl(2,F), each element in sl(2,F), every element in
sl(2,F) can be expressed as a linear combination of elements from B. Suppose that I is an
ideal of sl(2,F) and x ∈ I is some element of the ideal. Then, we can write x = c1A+c2B+c3C
for c1, c2, c3 ∈ F. By the definition of an ideal, we must have [x,B] ∈ I. So,

[x,B] = [c1A+ c2B + c3C,B]

= c1[A,B] + c2[B,B] + c3[C,B] = c1[A,B] + c3[C,B] = 2c1B − c3A

∈ I.

Bracketing this again with B gives

[2c1B − c3A,B] = 2c1[B,B]− c3[A,B]

= −2c3B

∈ I.

Thus, if −2c3 ̸= 0, B is an element of the ideal I. If B ∈ I, then we must have that [B,C] = A
is an element of the ideal and then [A,C] = −2C imples that C must also be an ideal. Since
I is an algebra of its own right, this would imply that I = sl2(2,F). So, we must have that
c3 = 0. Going back to x, we have

[x,C] = [c1A+ c2B + c3C,C]

= c1[A,C] + c2[B,C] + c3[C,C]

= −2c1C + c2A

∈ I.

Then, we must also have

[−2c1C + c2A,C] = −2c1[C,C] + c2[A,C]

= −2c2C

∈ I.

Similar to our previous argument, in order for I ̸= sl(2,F), we must have that c2 = 0. If we
have c2 = c3 = 0, then x = c1A. But, if c1 is nonzero, then A is an element of I, and we can
recover the other elements of the basis by bracketing A with B and C. Thus, for I to not
be equal to sl(2,F), we have c1 = 0. But, if all elements of I are equal to 0, then I = 0. We
have shown that I is either equal to 0 or sl(2,F), proving that sl(2,F) is simple.

Definition 2.8. A linear transformation ϕ : g → h between two Lie algebras is said to be a
Lie homomorphism if

ϕ([x, y]) = [ϕ(x), ϕ(y)]

for all x, y ∈ g.

A homomorphism that is both injective and surjective is an isomorphism. Lie Isomor-
phisms are fairly powerful as the Ring isomorphism theorems may be applied to Lie isomor-
phisms.

Definition 2.9. The adjoint of an element x in a Lie algebra g is the map ad x : g → g
defined by adx(y) = [x, y] for all y ∈ g.
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Remark 2.10. The adjoint ad x is not a bilinear map but a linear map.

Definition 2.11. The adjoint representation of a Lie algebra is the map that sends each
element of a Lie algebra to its adjoint. In other words, the adjoint representation is the map
ad : g → gl(V ) defined by ad(x) = ad x for all x ∈ g. The image of ad is denoted as ad(g).

To show that this is a Lie homomorphism, we have for all x, y, z ∈ g,

[adx, ad y](z) = (ad x ad y − ad y adx)(z)

= [x, [y, z]]− [y, [x, z]] = [x, [y, z]] Jacobi Identity

= ad([x, y])z.

Somtimes, when dealing with multiple algebras and subalgebras, it may be ambiguous to
which space we are referring ad to act on. To solve this dilemma, we may use subscript
notation adg to denote the space ad is acting on. However we only use this notation when
there is some ambiguity.

Definition 2.12. The derived algebra of a Lie algebra g is the set [g, g] consisting of all
linear combinations of lie brackets [x, y] for all x, y ∈ g.

Example. Consider g = sl(n,F). Recalling the formula for the bracket of two elements of
sl(n,F), we notice that we can recreate each element of its standard basis. Thus, we have
[g, g] = g.

Definition 2.13. If [g, g] = 0, a Lie algebra g is said to be simple.

Definition 2.14. The normalizer of a subalgebra h of a Lie algebra g, is the set Ng(h) =
{x ∈ g|[x, y] ∈ h,∀y ∈ h}

Restated, the normalizer of a subalgebra is simply the largest subalgebra of g containing
h as a basis.

Definition 2.15. For a Lie algebra g and one of its ideals, I, the quotient algebra g/I is
defined to be the quoteint space g/I with Lie bracket [x+ I, y + I] = [x, y] + I.

One might wonder if it is true that

[x+ I, y + I] ̸= [x′ + I, y + I]

when x and x′ are related under I. If this were to be true, the definition of the bracket of
a quotient algebra would be not well defined. To show that is well defined suppose that x′

and y′ are related to two elements of a Lie algebra g, x and y respectively. By definition of
relation, we have x′ = x+ v and y′ = y + u for v, u ∈ I. We then have

[x′ + I, y′ + I] = [(x+ v) + I, (y + u) + I]

= [x+ v, y + u] + I

= [x, y] + [x, u] + [v, y] + [v, u]

= [x, y] + 0 + I

= [x, y] + I

= [x+ I, y + I].

Definition 2.16. For a Lie algebra g and one of its ideals I, the canonical map π : g → g/I
is defined to be π(x) = x+ I = [x] for all x ∈ g.
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From this definition, we can consider the standard isomorphism theorems for rings. We
may easily replicate the proofs to show that some of the theorems hold true for Lie algebras
as well. For example, we have that if I and J are ideals of a Lie algebra g, then I+J

J
∼= I

I∩J .

Additionally, if I ⊂ J are ideals of a Lie algebra g, then J/I is an ideal of L/I and
L
I
J
I

∼= L
J
.

3. Solvability and Nilpotency

Definition 3.1. The derived series of a Lie algebra g is the series

L(0) = L,L(1) = [L(0), L(0)], . . . , L(i−1) = [L(i−2), L(i−2), L(i) = [L(i−1), L(i−1)].

Definition 3.2. A Lie algebra g is solvable if there exists some i such that L(i) = 0.

Lemma 3.3. Suppose that g is a solvable Lie algebra. Then, all subalgebras of g are solvable.
Additionally, if h is a Lie algebra for which there exists a Lie homomorphism ϕ : g → h,
then h is solvable.

Proof. Let h be a subalgebra of g. Then, if x, y ∈ h, x, y ∈ g, so we have h(i) ⊂ g(i). So
if g(n) = 0 we also have g(n) = 0 which completes the first part of the lemma. For the
second part, suppose that h is a homomorphic image of g with respect to the surjective Lie
homomorphism ϕ : g → h. We claim that ϕ(g(i)) = h(i). We show this with induction on i.
For i = 0, we have

ϕ(g(0)) = ϕ(g) = h

as ϕ is surjective. If we assume that the statement holds for i, we have

ϕ(g(i+1)) = ϕ([g(i), g(i)]) = [ϕ(g(i)), ϕ(g(i))] = [h(i), h(i)] = h(i+1).

■

Proposition 3.4. If g is not necessarily a Lie algebra, and I is a solvable ideal of g such
that the quotient algebra g/I is solvable, then g is solvable.

Proof. Recall the canonical homomorphism pi : g → g/I. Taking n to be the number such
that (g/I)(n) = 0, we have π(g(n)) = (g/I)(n) = 0 by the proof of the prior lemma. Thus
by the definition of a quotient space we have g(n) ⊂ I. Taking m to be the value such that

I(m) = 0, we now have g(n)
(m) ⊂ I(m) = 0, implying the result. ■

Corollary 3.5. Suppose that g is a Lie algebra containing solvable ideals I and J. Then,
I + J is a solvable ideal of g.

Proof. Recall that we have I+J
J

∼= I
I∼=J

. By the lemma, we have that (I + J)/J is solvable.
Since J is a solvable ideal of I + J such that (I + J)/J is solvable, we have that I + J is
solvable directly from the proposition. ■

When defining the derived series, we chose that for g(i) we would bracket g(i−1) with g(i−1).
We may wonder what would happen if we chose the second argument of the bracket to always
be g rather than some subalgbera of g.

Definition 3.6. The descending central series of a Lie algebra g is the series

g0 = g, . . . , gi = [g, gi−1].
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A lie algebra g is nilpotent if there exists some n such that gn = 0. Alternatively, we could
have expressed this definition as for g to be nilpotent, we must have that

[g, . . . , [g, g], . . .] = 0

for bracking g with itself some number of times. So if g is nilpotent, then for all sequences
of elements in g, such as {x1, . . . , xn}, we have

[xn, [xn−1, . . . , [x1, y], . . .] = 0

for all y ∈ g. Letting xn = xn−1 = · · · = x1 = x for some x ∈ g, we can see that if g is
nilpotent, then (ad x)n = 0, ie; adx is nilpotent. We say that x is ad nilpotent if adx is
nilpotent. From this reasoning, if g is nilpotent, all elements x ∈ g are ad nilpotent. We
may now wonder if the converse is also true, if all elements of a Lie algebra x ∈ g are ad
nilpotent, then is g nilpotent? This is known as Engel’s Theorem, which we will prove soon.

We present some statements which are analogous to the statements made for solvable Lie
algebras.

Proposition 3.7. If g is a nilpotent Lie algebra, then all subalgebras of g are nilpotent.
Additionally, all Lie algebras h for which there exists a Lie homomorphism ϕ : g → h are
nilpotent.

Proof. Letting h be a subalgebra of g, we have hi ⊂ gi. Thus we have proved the first part of
the proposition. For the second part, we consider the surjective homomorphism ϕ : g → h
where h is some Lie algebra. Then, we claim that ϕ(gi) = hi. We prove this using idnuction
on i. For i = 0, we have ϕ(g0) = ϕ(g) = h as ϕ is surjective. Assuming the homomorphism
for i, we have

ϕ(gi+1) = ϕ([g, gi]) = [ϕ(g), ϕ(gi)] = [h, hi] = hi+1.

■

Proposition 3.8. Suppose that g is a Lie algebra. Define the center of a Lie algebra g to be

C(g) = {x ∈ g|[x, z] = 0, ∀z ∈ g}.

Then, if the quotient algebra g/Z(g) is nilpotent, g is nilpotent.

Proof. Becauseg/Z(g) is nilpotent, we have (g/Z(g))n = 0 + Z for some n. Note that this 0
is an element of g rather than Z(g). Taking the canonical homormorphism, we have π(gn) =
(g/Z(g))n = 0 + Z(g). So, we have gn ⊆ ker(π) = Z(g) by the definition of the center. To
complete the proof, we have gn+1 = [g, gn] ⊆ [L,Z] = 0 so g is nilpotent. ■

Proposition 3.9. If a lie algebra g is nilpotent, its center Z(g) is not zero.

Proof. There exists some n such that gn = 0 by the deifnition of nilpotency. Because if
gn = 0, gn+1 = 0, we take the smallest such n that gn = 0. So, we have gn = [g, gn−1] = 0,
each element of gn−1 bracketed with each element of g returns 0, implying that gn−1 ⊆ Z(g).
But, because we previously said that n is the smallest number such that gn = 0, we have
that gn−1 ̸= 0, completing the proof. ■

In order to prove Engel’s theorem, we must first prove the following lemmas.

Lemma 3.10. Let x ∈ gl(V ) for finite V be nilpotent. Then, there exists some v ∈ V such
that xv = 0.
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Proof. Take n to be the smallest number such that xn = 0. Then, xn−1 ̸= 0. So, we have
that xn−1V ̸= {0} where xn−1V denotes the set of multiplying xn−1 with each element of V.
Since xn−1V ̸= {0}, there must exist some w ∈ V such that xn−1 = w ̸= 0. Let’s call this
quantity u. So to complete the proof, we use left multiplication by x to obtain

xu = x(xn−1v) = xnv = 0.

Thus u is the desired element in V such that xu = 0. ■

Lemma 3.11. Let x ∈ gl(V ) for finite V be nilpotent. Then, adx is nilpotent.

Proof. Take n to be the smallest n such that xn = 0. Then, because we are working over
the general linear algebra, we have ad x(y) = xy − yx for all y ∈ g. We can now denote
left multiplication by x as Lx and right multiplication of x by Rx. For any element y ∈ g,
we have LxRxy = xyx = RxLxy as matrix multiplication is associative. Thus, Lx and Rx

commute. Using the binomial theorem, we have

(adx)2n(y) = (Lx −Rx)
2n(y)

=
2n∑
i=0

(
2n

i

)
(−1)2n−iLi

xR
2n−i
x y

=
2n∑
i=0

(
2n

i

)
(−1)2n−ixiyx2n−i

= 0.

We computed the last expression by noting that since i and (2n− i) sum to 2n, one of them
has to be greater than or equal to n. Since xn = 0, the last expression must be equal to 0,
showing that ad x is nilpotent. ■

Lemma 3.12. If g is a linear Lie algebra consisting of nilpotent endomorphisms, there exists
some nonzero v ∈ V such that xv = 0 for all x ∈ g.

Proof. We proceed with strong induction on n = dim g. The case n = 0 trivial and the
case n = 1 is implied from Lemma 3.1. Now let h be a maximal proper subalgebra of g, a
proper subalgebra that is not contained in any other subalgbera of g. We wish to decompose
g into the direct sum of h and some other algebra. By the lemma we know that for each
x ∈ h, adx is nilpotent. So, we consider the restricted adjoint representation on g defined
by adh : g → gl(g) where the domain is restricted to elements of h. So, we may take the
restricted adjoint representation adh : g/h → gl(g/h). As we have dim(h) < dim(g), we can
use the induction hypothesis to say that there is some x+h ∈ g/h such that [y+h, x+h] = 0
for all y ∈ h. We can also express this as [y + h, x + h] = [y, x] + h = 0 which implies that
[y, x] ∈ h for all y ∈ h. The preceding argument shows that Nh(g) contains h and since h
is maximal, we have Nh(g) = g. Hence, h is an ideal of g. We have dim(g/h) = 1 so h has
dimension 1 which allows us to write g = h⊕Fz for z ∈ g− h. As h has a smaller dimension
than g, we have W = {v ∈ V |hv = 0} having a nonzero cardinality. Because h is an ideal,
we have yx(w) = xy(w)− [x, y](w) = 0. Referring back to our decomposition of g, let z be a
endomorphism with an eigenvector w ∈ W for z acting on W. This w satisfies x(w) = 0 for
all x ∈ g, completing the proof. ■
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Theorem 3.13 (Engel). If all elements of a Lie algbera g are ad-nilpotent, then g is nilpo-
tent.

Proof. By the prior lemma, there exists some v ∈ g such that [x, v] = 0 for all v ∈ g. Thus,
the center of the Lie algebra, Z(g), is nonzero. Inducting on dim g proves that the quotient
algebra g/Z(g) is nilpotent so g is nilpotent by Proposition 3.8. ■

Corollary 3.14. If h is a nonzero ideal of a nilpotent Lie algebra g, then h∩Z(g) is nonzero.

Proof. Because g acts on h by ad, Engel’s theorem guarantees some x ∈ h such that [y, x] = 0
fr all y ∈ h. The corollary then follows from the definition of the center of a Lie algebra. ■

A flag is a sequence of subsets 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V where Vi has dimension i. A
endomorphism x ∈ gl(V ) stabilizes this flag if x(Vi) ⊂ Vi for all Vi in the sequence.

Proposition 3.15. Taking the same conditions as Engel’s theorem, there exists a flag (Vi)
in V that is stabilized by g such that x(Vi) ⊂ Vi−1 for all x ∈ g.

By Engel’s theorem, there is some v ∈ V such that x(v) = 0 for all x ∈ g. Let V1 = Fv.
We can now let W = V/V1 and thus the action of g on W is by nilpotent endomorphisms.
To show that W has a flag stabilized by g, we use induction on dimV. The inverse image in
V is the flag satisfying the conditions of the theorem.

Moving on from solvability, we discuss nilpotency by the means of Lie’s theorem. As with
Engel’s theorem, we must break the theorem into shorter lemmas as it is highly technical.

Lemma 3.16. If g is a solvable Lie subalgebra of gl(V ) where V is a finite, nonzero vector
space, there is some v ∈ V such that v is an eigenvector for each endomorphism in g.

Proof. Once again, we use strong induction on dim(g). We take n = 0 and n = 1 as our
base cases. As these cases are trivial, we may now show the general case. Since g is
solvable, we have that [g, g] is included in g. Now we must show that g/[g, g] is abelian.
We have [x + [g, g], y + [g, g]] = [x, y] + [g, g] for all x, y ∈ g. Since [x, y] ∈ [g, g], we have
[x + [g, g], y + [g, g]] = 0 + [g, g] = [0] which immediately implies commutativity. Thus,
any subspace of the quotient g/[g, g] is an ideal. We can now construct an ideal h in g
having codimension one by taking the inverse under the canonical homomorphism from a
subspace of codimension one in g/[g, g]. Since h has a smaller dimension than g, the induction
hypothesis guarantees some common eigenvector v ∈ V for h. If h is the zero space, we simply
take v to be an eigenvector of a basis vector of g to complete the proof. However, if h is
nonzero, we have x(v) = λ(x)v where λ : h → F is linear. We can construct the space
W = {v ∈ V |x(v) = λ(x)v} for all x ∈ h. By the induction hypothesis, as well as our
assumption of the non-triviality of h, we have that W is nonzero. We must now show that
W is invariant under V. We have yx(v) = xy(v) − [x, y](v) = λ(y)x(v) − λ([x, y])(v) for
all x ∈ g, y ∈ h, and v ∈ W. In order for W to be invariant under W we should have
yx(v) = λ(y)x(v). Thus, we need to show that λ([x, y])(v) = 0. For x ∈ g, v ∈ W, let c be
the smallest positive integer such that the vectors v, x(v), . . . , xn(v) are linearly dependent.
And then we take Wi = span(v, x(v), . . . , xi−1(v)). By convention we let W0 = 0. Thus, we
have dim(Wn) = n. By our definition of n, we have that Wn+1 is linearly dependent, so we
can conclude that Wn+1 = Wn. Additionally, for all z ∈ Wn, we have x(z) ∈ Wn. Now take
some y ∈ h. For Wn we fix the standard basis v, x(v), . . . , xn−1(v) and write y as a matrix
with respect to this basis. We claim that y is an upper triangular matrix with all diagonal
entires equal to λ(y). To prove, this we must first prove the claim that yxi(v) ≡ λ(y)wi(v)
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(mod Wi). We prove this with induction on i. For i = 0, we have Wi = 0 so the claim follows.
Now, we assume that the claim holds for i − 1. We have yxi(v) = yxxi−1(v) = xyxi−1(v).
From our inductive hypothesis, we have yxi−1(w) = λ(y)xi−1(v) + d for some d ∈ Wi−1. We
complete our proof of this claim by noticing that x sends Wi−1 into Wi. If we are taking y
to be an endomorphism acting on Wn we have an n by n matrix so Tr(y) = nλ(y). Taking
some u ∈ h, we similarly have that u as well as y leaves Wn invariant so we take [x, y] to
act on Wn. We compute Tr([x, y]) = Tr(xy − yx) = Tr(xy)−Tr(yx) = 0. We computed this
bracket by recalling that we are working over a subalgbera of a general linear algebra. As
[x, y] has a trace of 0, we have nλ([x, y]) = 0 since we are assuming F has characteristic 0
which means it cannot have characteristic n (refer back to our definition of n, we defined n
to be positive). We have proven our prior claim that W is invariant under V. So, as in our
proof of Engel’s theorem, we decompose g as g = h ⊕ Fz for z ∈ g − h. We take v ∈ W to
be an eigenvector of z. We see that v is an eigenvector for all elements of g concluding the
proof. ■

Theorem 3.17 (Lie). If g is a solvable Lie subalgebra of gl(V ) for finite V, g stabilizes some
flag in V.

Proof. We obtain this by inducting on dimV. ■

Corollary 3.18. If g is a solvable Lie algebra, then x ∈ [L,L] implies that adL x is nilpotent.

Recall the Jordan-Chevalley decomposition of a linear operator x as x = xs+xn where xs

is semisimple and xn is nilpotent with both parts commuting. The decomposition theorem
guarantees the uniqueness and existence of these parts. Recall that a linear operator is
semisimple if its roots of its minimal polynomial over F are distinct. Additionally, we can
express the semisimple and nilpotent parts as xs = p(T ), xn = q(T ), where p and q are in
one indeterminate and have no constant term. So if some endomorphism y commutes with
x, so do xs and xn. For the final part of the decomposition, if A ⊂ B ⊂ V and x ∈ gl(V )
with x mapping B into A, then xs and xn map B into A.

Lemma 3.19. Let x be an endomorphism of a finite vector space V. Letting its Jordan
decomposition be x = xs+xn, then adx = adxs+adxn is the Jordan decomposition of adx.

Proof. We have [adxs, adxn] = ad[xs, xn] = 0 so adxs and adxn commute. By Lemma, if
xn is nilpotent, then ad xn is also nilpotent. We must now show that ad xs is semisimple.
To prove this, we let (v1, . . . , vn) be a basis in V such that x has diagonal (a1, . . . , an) where
the ais are the eigenvalues of x. Now we must take a standard basis in gl(V ) which we do
by taking {eij} defined by eij(vk) = δjk(vk). Now, because [eij, ekl] = δjkeil − δliekj, we have
adx(eij) = (a1 − aj)eij implying that adx is diagonalizable and hence semisimple. ■

Lemma 3.20. Let W and V be vector spaces such that W ⊂ V ⊂ gl(V ) and W and V
are Lie subalgebras. Let S = {x ∈ gl(V )|[x, b] ∈ A} for all b ∈ B. Then, if x ∈ S satisfies
Tr(xy) = 0 for all y ∈ S, x is nilpotent.

The proof of this lemma can be found in [HUM94]. Now, for one of the highlights of this
paper, we prove Cartan’s criterion for a solvable linear Lie algbera. Cartan’s theorem tells
us when a linear algebra is solvable.

Theorem 3.21 (Cartan). Suppose that g is a subalgebra of gl(V ) for finite V . If Tr(x, y) = 0
for all x ∈ [g, g] and y ∈ g, then g is solvable.
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Proof. First note that by Engel’s theorem, if for each x ∈ [g, g] adx is nilpotent, then [g, g] is
also nilpotent. Furthermore, if [g, g] is nilpotent, then g is solvable. THus we need to prove
that [g, g] is nilpotent. To use the previous lemma, we take A = [g, g] ⊂ B = g ⊂ gl(V ).
Thus, referring to the lemma, we have M = {x ∈ gl(V )|[x, g] ⊂ [g, g]}. We see that we have
Tr(xy) = 0 for all x ∈ [g, g], y ∈ M. Letting, [x, y] be an element of a spanning set of [g, g],
and taking some z ∈ M, using the Lie bracket for linear algebras and standard properties
of the trace function gives Tr([x, y]z) = Tr(x[y, z]) = Tr([y, z]x). And since [y, z] ∈ [g, g] we
have Tr([y, z]x) = 0, completing the proof. ■

4. Representation Theory

We may turn our attention to study the representations of semisimple Lie algebras to
learn more about their structures. Informally, a representation of a Lie algebra is a ho-
momorphism sending elements of the algebra to a map that acts on the algebra. Thus, a
representation allows us to have an element of a Lie algebra act on the algebra. One example
of a representation is the adjoint representation, ad : g → gl(V ). One may also consider other
representations of a Lie algebra.

Definition 4.1. A representation of a Lie algebra g is a Lie homomorphism ϕ : g → gl(V ).

One goal of representation theory is to distinguish between representations. We hope to
categorize representations. To do this, we need to include some additional theory.

Definition 4.2. If ϕ : g → gl(V ) is a representation of a Lie algebra g, W ⊂ V is invariant
under V if it is preserved under the action of g.

A sub-representation of a representation ϕ is a representation restricted to some invariant
subspace of V. We can now distinguish between reducible and irreducible representations.
We say a representation is irreducible if it has no proper nontrivial sub-representations, or in
other words, the only invariant subspaces of V are the zero space and itself. On the contrary,
a representation is completely reducible if there exist irreducible invariant subspaces of V
such that V = ⊕iUi. We define the representation of a direct sum to be the direct sum
of the representations: x ∈ g acts on V = ⊕iUi as x(u1, . . . , ui) = (x(u1), . . . , x(ui)). One
celebrated theorem pertaining to the theory of irreducible and reducible representations is
Weyl’s theorem on complete reducibility, the proof of which can be found in [HUM94].

Theorem 4.3 (Weyl). If ϕ is a representation of a semisimple Lie algebra, then ϕ is com-
pletely reducible.

This theorem simplifies the representation theory of semisimple Lie algebras and gives
us some motivation to work with them. We define a special bilinear form to work with
semisimple Lie algebras, the killing form K(., .).

Definition 4.4. In the future, we may use (., .) to denote the Killing form rather than
K(., .). For a Lie algebra g, its killing form is K(x, y) = Tr(adx ad y).

This form is bilinear, symmetric, and associative with respect to the bracket on g, as in
K([x, y], z) = K(x, [y, z]).

Definition 4.5. If B is a bilinear form on a space V, its radical is

radB = {v ∈ V |B(v, u) = 0,∀u ∈ V }.
A form is nondegenerate if radB = 0.
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The radical of a bilinear form is somewhat analogous to the center of a Lie algebra. Recall
that the only solvable ideals of semisimple Lie algebras are trivial.

Theorem 4.6 (Cartan’s Solvability Criterion). A Lie algebra g is solvable iff its Killing
form, K, satisfies K(x, y) = 0 for all x ∈ g, y ∈ [g, g].

This theorem is interesting as it relates a Lie algebra’s Killing form to the solvability of
the algbera. This theorem also allows us to make a statement for the radical of the Killing
form.

Proposition 4.7. If g is a Lie algebra with Killing form K, radK is a solvable ideal of g.

Proof. Suppose that x ∈ radK and y, z ∈ g. Then,

K([x, y], z) = K(x, [y, z]) = 0

which tells us that [y, z] ∈ radK by the definition. So, radK is an ideal of g. To show
that it is solvable, we consider the Killing form on the radical of the Killing form of g which
is certainly a mouthful. Let L denote the Killing form on radK. Let us decompose g as
g = h⊕ s for Lie algebra h and vector space s. Consider some x ∈ radK. Then, the matrix
of adx with respect to the Lie algbera decomposition mentioned earlier has a bottom row of
zeroes. So, for all x, y ∈ radK, L(x, y) = Tr(ad x ad y|radK) = Tr(adx ad y) = K(x, y) = 0.
The result follows from Cartan’s Solvability Criterion. ■

Theorem 4.8 (Cartan’s Semisimplicity Criterion). If g is a Lie algbera, it is semisimple iff
its Killing form K is nondegenerate.

Proof. The first direction follows easily; if g is semisimple, radK is a solvable ideal of g. But
since the only solvable ideal of a semisimple Lie algebra is 0, we have radK = 0. The second
direction requires slightly more work. Suppose that K is nondegenerate. Take I to be a
solvable ideal of g. Now let n be the smallest number such that In = 0. Then, a = Bn−1 is
obviously a nonzero ideal of g and we can see that a is abelian. Then, for x ∈ a and y ∈ g,
the map f = adx ad y is a map from g to a and f 2 = 0 as a is abelian. So, K(x, y) = 0 and
a ∈ radK. Hence since K is nondegenerate we have a = 0, proving that g is semisimple. ■

Throughout this section, we may have questioned how semisimple Lie algebras relate to
simple Lie algebras. It turns out that semisimple Lie algebras are the direct sums of simple
Lie algebras. We are unfortunately unable to prove this theorem as it requires some more
advanced theory. Thus we defer it to [Bos12].

Theorem 4.9. A Lie algebra g is semisimple iff g = ⊕ihi for simple Lie algebras hi.

Corollary 4.10. A quotient of semisimple Lie algberas is semisimple. Furthermore, homo-
morphic images of semisimple Lie algebras are semisimple.

We shall shift our focus away from the representation theory of abstract semisimple Lie
algebras and look at the representations of sl(2,C). Along the away, we will develop theory
which will be greatly useful in the following sections.

Let ϕ : sl(n,C) → gl(V ) be a representation of the special linear algebra. Consider the
basis vector of sl(2,C) x = e11 − e22. Then, x acts diagonally on sl(2,C) via the adjoint
representation. By [Bos12], we have that ϕ(x) is diagonalizable. This implies that V is the
direct sum of eigenspaces as follows:

Vα = {v ∈ V |x · v = αv}
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for eigenvalues α ∈ C. The eigenvalues α and the eigenspaces Vα weights and weight spaces
respectively.

Proposition 4.11. If v ∈ Vα, then e21v ∈ Vα+2 and e12v ∈ Vα−2.

Proof. Fortunatly, this proposition follows from direct computation. We have

x(e21(v)) = e21(x(v)) + [x, e21](v)

= α(x(v)) + 2x(v)

= (α + 2)(v).

Similarly, we have

x(e12(v)) = e12(x(v)) + [x, e12](v)

= α(x(v))− 2x(v)

= (α− 2)(v).

■

Proposition 4.12. The weights form a sequence α, . . . , α+ 2n for some weight α.

Proof. Fixing a weight α, we have that the vector space ⊕n∈ZVa+2n is invariant under g.
Because V is irreducible, its only invariant subspaces are 0 and itself. Thus, the proposition
follows. ■

As V is finite, there is some weight β that is larger than all other weights, making it a
maximal weight. For some v ∈ Vβ, we have e21v = 0 and en12v ∈ Vβ−2n. As the difference
between the weights in g is two, we can take z to be the largest number such that β − 2z is
a weight.

Proposition 4.13. The vector space W = span(v, e12v, . . . , e
z
12v) is invariant under g and

is a basis for V.

Proof. Because g is bilinear, we only need to show that W is invariant under the basis vectors
of g. We have e12(e

i
12(v)) = ei+1

12 (v) so W is preserved under e12. For x = e11 − e22, we have
x(ei12(v)) = (β − 2i)ei12(v). To show invariance under e21, we prove the following identity:

e21(e
i
12(v)) = i(β − i+ 1)ei−1

12 (v)..

We show this using induction on i. The base case is trivial. Assuming the identity holds for
i, we have

e21(e
i+1
12 (v)) = e21e12(e

i
12(v))

= ([e21, e12] + e12e21)e
i
12(v)

= x(ei12(v)) + (e12e21e
i
12(v))

= (β − 2i)ei12(v) + e12(i(β − i+ 1)ei−1
12 (v))

= (i+ 1)(β − (i+ 1) + 1)ei12(v).

■
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Thus, we may classify representations of sl(2,C) by their maximal weight β. We have

shown that all irreducible representations of g can be written as V = ⊕β
n=0V2n−β. We may

also wonder, given a representation of g, how can we find its maximal weight? We have

0 = e21(e
z+1
12 (v)) = (k + 1)(β − k)ek12(v)

so β is simply the largest integer such that β− 2k is a weight. From this, it also follows that
if V is a representation of g with decomposition V = ⊕nUn, then the number of irreducible
Ui is simply the sum of the dimensions of the 0 and 1 weight spaces of the weight space
decomposition of V.

5. Root Space Decompositions

In this section, we use theory from the previous sections, such as weight space decomposi-
tions, to provide an alternate decomposition for a Lie algebra: the root space decomposition.
First, note that by Engel’s theorem, a semisimple Lie algebra g cannot consist of only nilpo-
tent elements as that would cause g to be nilpotent. So, g contains semisimple elements. We
have the existence of a subalagbera of g consisting of only semisimple elements as the span
of a semisimple element of g is abelian.

Definition 5.1. A Lie subalgebra h of a semisimple Lie algebra g is a toral subalgebra if
each element x ∈ h is semisimple.

Lemma 5.2. All toral subalgebras are abelian.

Proof. For x ∈ h, adx is diagonalizable. Because ad x is diagnolizable, if it has some nonzero
eigenvalue a, then, there would be some nonzero y ∈ h such that adx(y) = ay which would
imply that h is not abelian. Thus, we show that adx does not have any nonzero eigenvalues.
Assume for the sake of contradiction that there is some y ∈ h such that [x, y] = ay for nonzero
a ∈ C. Then, ad y(x) = −ay and taking the ad y of both sides shows that ad y(ad y(x)) =
−a ad y(y) = 0. Since y is also diagonalizable, x is a linear combination of eigenvectors of
ad y. This implies that ad y must have a nonzero eigenvalue ad y(x) = −ay and we assumed
a to be nonzero. But, we have ad y(ad y(x)) = 0 which is a contradiction. ■

Definition 5.3. A maximal toral subalgebra is a Cartan subalgebra.

IfW is a subspace of gl(V ) consisting of diagonalizable linear maps, then the elements ofW
are simultaneously diagonalizable, or in other words, there exists some invertible map S such
that SxS−1 is diagonal for all x ∈ W. So, the action of a Cartan subalgebra h is simultaneously
diagonalizable. We then decompose g into eigenspaces gα = {x ∈ g|[h, x] = α(h)x} for h ∈ h,
α ∈ h∗, where h∗ is the dual space, and x ∈ g. For the adjoint representation, we call the α
roots and the gα root spaces. Let R be the set of all roots. Then, we decompose g as

g = Cg(h)⊕α∈R gα.

Recalling Cg(h) as the centralizer, we clearly see that h ⊂ Cg(h). We produce a plethora of
statements pertaining to this root space decomposition to build more theory.

Proposition 5.4. (1) If α and β are roots of g, then [gα, gβ] ∈ gα+β.
(2) If x ∈ gα, then adx is nilpotent.
(3) If α ̸= β are roots pf g, mfgα and gβ are orthogonal under the Killing form.
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Proof. (1) For x ∈ gα, y ∈ gbeta, h ∈ h,

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = (α + β)(h)[x, y].

(2) First note that adx sends Vγ to Vγ+α. The result follows from part 1 and noting that the
finite dimensionality of V implies that Vγ+kα = 0 for some k. (3) The map adx ad y sends
Vγ to Vγ+α+β. The result follows from part 1 and noting that the finite dimensionality of V
implies that Vγ+k(α+β) = 0 for some k. ■

Recall that Cartan subalgebras are orthogonal to the root spaces of g. This observation,
along with others, are used in [Bos12]. to prove the following theorem.

Theorem 5.5. If h is a Cartan subalgebra of g, then Cg(h) = g.

We now consider the dual of a Cartan subalgebra. Specifically, isomorphisms between
a Cartan subalgebra and its dual. For h ∈ h take the functional αh(x) = K(h, x). It
follows from standard properties of the Killing form which we mentioned previously that
h → αh(x) is an isomorphism. So, every functional α ∈ h∗ has a unique (by the isomorphism)
corresponding element δ ∈ h such that α(h) = K(δ, h) for all h ∈ h. Thus we may define the
Killing form on a dual space as follows:

K(α, β) = K(δα, δβ).

It is somewhat abusive notation to have K denote the Killing form on both an algebra and
its dual, but we do so anyways. We may prove some statemenets pertaining to h∗.

Proposition 5.6. R spans h∗.

Proof. Assume for the sake of contradiction that there exists some nonzero h ∈ h such that
α(h) = 0 for all roots α. Then α acts trivially on each root space of g. But, g is semisimple
so its center is trivial. Thus, we have h = 0 which is a contradiction. ■

Proposition 5.7. If α is a root then −α is also a root.

Proof. Suppose that xα is a nonzero vector in gα. Then, there is some yα such thatK(xα, yα) ̸=
0. But if alpha+β ̸= 0, gα is orthogonal to gβ with respect to the killing form so yα ∈ g−α. ■

Proposition 5.8. The vector space [gα, g−α] is the 1 dimensional span of δα.

Proof. For xalpha ∈ gα and yα ∈ g−α, we have

K(h, [xalpha, yα]) = K([h, xα], yα) = α(h)K(xα, yα) = K(h, δα)K(xα, yα)

for all h ∈ h. So, we have
K(h, [xα, yα]−K(xα, yαδα) = 0.

To conclude the proof, that each linear combination of a bracket [xα, yα] is spanned by δα,
we have [xα, yα] = K(xα, yα)δα as K is nondegenerate. ■

Proposition 5.9. For all roots α ∈ R,K(α, α) ̸= 0.

Proof. As before, let xα ∈ gα and yα ∈ g−α. However, this time we place the restriction that
K(xα, yα) ̸= 0. By the previous proposition, this spans a three dimensional subalgebra aα of
g. Now note that if the Killing form applied to (δα, δα) is zero, then δα acts trivially on aα.
Thus, we have a1α = Cδα and a2α = 0. Thus, aα is solvable. So, by Engel’s theorem, ad δα is
nilpotent. But, if δα is ad−nilpotent, then it is impossible for δα to be a nonzero element of
h. ■
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Proposition 5.10. For a root α and an element of the corresponding root space x ∈ gα,
there exists some y ∈ g−α such that span(xα, yα, zα = [xα, yα]) is a is a subalgebra sα of g
that is isomorphic to sl2(C).

Proof. First, we have that dim(sα) = dim(sl2(C)) as we recall the standard basis for the
special linear algebra of dimension two. Now, we have α(zα) ̸= 0 ̸= α(δα). This allows us
to scale yα to have the same Lie brackets as the standard basis of sl2(C). For the explicit
construction, we choose yα to satisfy K(xα, yα) = 2

K(δα,δα)
. If we had K(δα, δα) = 0 this

construction would clearly not work. From this construction, we have zα +K(xα, yα)δα. ■

This isomorphism allows us to use the theory in the prior section on root spaces. Recall
the sequence of roots for g we found in the last section. These roots were symmetric on the
origin. We consider a reflection in h∗ defined by Rα(β) = B −B(zα)α for root α. We define
the group generated by these reflections to be the Weyl group W.

Proposition 5.11. The roots of g are invariant with respect to W.

Proof. To prove this, we consider roots congruent to the root β modulo α for root α. We
show that these roots are invariant with respect to Wα. Consider the subalgebra sα of g.
Then the space W = ⊕n∈ZVβ+nα is a well-defined representation of sα. The sequence of roots
of the root spaces is then

β + nα, . . . , β +mα.

Then, the sequence of roots for sα is

β(zα) + 2n, . . . , β(zα) + 2m.

But, we remember that the roots are symmetric around the origin. So, this implies that
β(zα) = −m− n which is an integer. Now, we conclude the proof by showing that the con-
sidered roots are invariant with respect to the reflection. This is shown by the computation

Wα(β + (n+ k)α) = β + (n+ k)α− (−(m+ n) + 2(n− k)))α = β + (m− k)α.

■

Corollary 5.12. For roots α, β, β(zα) ∈ Z.

We end this section with four more statements, the proofs of which can be found in [Bos12].

Proposition 5.13. If α is a root, the only multiples of α which are also roots is −α.

Proposition 5.14. Each root space gα has dimension one.

Proposition 5.15. The Cartan subalgebra h is spanned by the zα and g is generated by the
root spaces gα.

Theorem 5.16. The Killing form K is positive definite on the roots and the subspace spanned
by the roots in h∗.

6. Root Systems

In this section, we consider a more geometric point of view by looking at root systems.
Although they seem unrelated from Lie algebras at first, we show their usefulness in the
study of Lie algebras.

Definition 6.1. A root system is a collection of roots R in Euclidian space E such that
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(1) R is finite and spans E.
(2) If α is a root, then the only root multiples of α are ±α.
(3) The roots are invariant under the Weyl group.
(4) If α and β are roots, then

nαβ = 2
(α, β)

(β, β)

is an integer for the standard inner product in E.

Suppose that for two roots α, β, we let θ be the angle between them. Then, we have

nβα = 2 cos(θ) ∥β∥∥α∥ . We now try and classify these roots. We take l : E → R be a linear

functional that is irrational with respect to the roots. The positive roots, R+ are the roots
r ∈ R such that l(r) > 0. Similarly, the negative roots, R− are the roots r ∈ R such that
l(r) < 0. A simple root is a positive root that is not the sum of two other positive roots.

Example. Consider the special linear algebra sln(C). Recall the standard basis eij for i ̸= j
and hi,i+1 = eii− ei+1,i+1 for 1 ≤ i ≤ n− 1. Then, we consider h to be the Cartan subalgebra
defined by the span of all of the hi,i+1. Let the functional corresponding to ekk be lk : sln(C) →
C. From this, we have that h∗ is the span of linear combinations

∑n
i=0 aili for

∑n
i=0 ai = 0.

So, we have [hij, ekm] = (lk − lm)hijekm so the roots are lk − lm for 1 ≤ k ̸= m ≤ n. Now,
consider the function L(

∑n
i=1 liai) =

∑n
i=1 aibi for

∑n
i=1 bi = 0 and bi > bi+1 for all i. From

this, we see that the positive roots are lk− lr for k > r. Within the positive roots, the simple
positive roots are Ln − Ln−1. Pairs of consecutive simple roots have an angle of 2π

3
between

them and all other pairs of simple roots have angle π/2 between them. So, for sl2(C) we
have the simple positive root l2 − l1. We visualize it as shown.

Proposition 6.2. Suppose that α and β are roots where β is not a multiple of α. Then, the
α−string through β,

β − pα, . . . , β − α, β, . . . , β + qα

has at most 4 elements in a string. Furthermore, p− q = nβα.

Proof. Recalling the reflection Wα, we have B − pα = Wα(p+ qα) = (β − nβα)− qα. So, we
have nβα = p− q. And we have |nβα| ≤ 3 which implies the second result. ■

Corollary 6.3. Take α and β to be roots as in the previous propsition. Then, (β, α) > 0 iff
α − β is a root. (β, α) < 0 iff α + β is a root. (β, α) = 0 if α and β are both roots or are
both not roots.

Proposition 6.4. If α and β are simple roots such that α ̸= β, then ±(α−β) are not roots.

Proof. Recall that simple roots are the sums of two positive roots. So, if α − β is a root,
then we must have that α = (β) + (α − β) is not a simple root which is a contradiction.
And if β − α is a root then we have that β = (α) + (β − α) is not simple which is again a
contradiction. ■

Corollary 6.5. If θ is the angle between two simple roots α, β, then θ ≥ 90.

Proposition 6.6. All of the simple roots are linearly independent.
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Proof. By our definition of a root system, we have that all of the roots are located on the
same side of the hyperplane of the reflection in E. Combining this with the prior proposition
that all angles between simple roots are not acute, we have our result. We have also shown
that the root system is a basis in E. ■

Proposition 6.7. Each simple positive root has a unique decomposition as a nonnegative
linear combination of simple roots (where each coefficient of a simple root is an integer).

Proof. Assume for the sake of contradicition that β is a positive root with a minimal l(β), that
is not equal to an integral nonnegative linear combination of simple roots. We can say that
β = α + ζ for positive roots α, ζ and the result follows from observing that l(γ) < l(β). ■

Theorem 6.8. If αi is a set of simple roots in a root system, any positive root β has a
decomposition as β = αi1 + . . .+ βαin

where if 1 ≤ m ≤ n then αi1 + . . .+ αim is positive.

Proof. Obviously by the prior proposition we can write B = αi1 + . . . + βαin
as the simple

roots form a basis. All that is left to show is that 1 ≤ m ≤ n =⇒ αi1 + . . . + αin is
positive. We show this with induction on m. We have β = αi1 + . . . + αim+1 . Then, we
(β, αi0) + . . .+ (β, αi=n) = (β, β) > 0 so (β, αik) > 0 for some αik . Hence, we have β − αik is
a positive root by proposition ■

We have now built enough theory to discuss the relation between these root systems and
the root space decomposition Lie algebras. We do this by considering taking the bracket of
two root spaces of a Lie algebra g with Cartan subalgebra h.

Lemma 6.9. If α, β, α+β are roots such that β is not a multiple of α, then [gα, gβ] = gα+β.

Proof. Each root space is one dimensional, so if we bracket [gα, gβ] we will get either 0 or
gα+β. Thus, it will be sufficient to show that we will not get 0. Recalling sα, we construct the
representation W = ⊕n∈Zgβ+nα. We now see that h is not a subspace of W and that each
part of the decomposition of W has dimension one. Thus, we have W is irreducible. Thus,
if [gα, gβ] = 0, the sub representation W = ⊕n≤0gβ+nα is a proper subrepresentation which
contradicts W being irreducible. Thus, we have [gα, gβ] = gα+β. ■

The beauty of this theorem lies in the observation that the root spaces of a root gα generate
all of the root spaces and thus the Lie algebra. One application of this theorem follows from
considering maps between root spaces.

Definition 6.10. If, for Euclidian spaces E and E ′, R ⊂ E and R′ ⊂ E ′ are root spaces, a
linear map ϕ : R → R′ is an isomorphism if (ϕ(α), ϕ(β)) = (α, β) for all roots α, β ∈ R.

Theorem 6.11. If g and g′ are simple Lie algebras with cartan subalgebras h and h′, with
root directions given by the functionals l and l′ respectively, then there exists an isomorphism
between R and R′ if there exists an isomoprphism between g and g′.

The proof of this theorem can be found in [Bos12].

Definition 6.12. A root system is reducible if there exists some P ∈ R such that for
P ′ = R \ P, all roots in P are orthogonal with all roots in P ′. A root system is irreducible
otherwise.

Theorem 6.13. If g is a simple Lie algebra, then its root system R is irreducible.
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Proof. Assume for the sake of contradiction hat R is reducible. Then, we have some subset
P ∈ R such that all roots in P are orthogonal with all roots in P ′. Furthermore, P and P ′

are both nonempty. Take k to be the subalgebra of g that is spanned by all root systems gα
for root α. If β is some root in P ′, then (α + β, α) ̸= 0 and (α + β, β) ̸= 0 so α + β is not
a root, which implies from lemma that [gα, gβ] = 0. Then, we have [k, gβ] = 0 which tells us
that k is a proper subalgebra of g as Z(g) = 0. But, since k is also an ideal, as 0 ∈ k, we have
that g is not simple which is a contradiction. ■

7. The Classification Theorem

We first define the simple Lie algebras. The simple Lie algebras are a family of four types
of Lie algebras: An, Bn, Cn, Dn. All simple Lie algebras are either in this family or in the
family of exceptional Lie algebras: E6, E7, E8, F4, G2.

Definition 7.1. An : The algebra sl(n+ 1,F) of endomorphisms of V with trace 0.

Definition 7.2. Bn : We let V have dimension 2n + 1 and take f to be a nondegenerate

symmetric bilinear form on V with matrix

1 0 0
0 0 In
0 In 0.

 Then we define the orthogonal

algebra o(2n+ 1,F)to be all endomorphisms x of V such that f(x(v), w) = −f(v, x(w)) for
w ∈ V.

Definition 7.3. Cn : We let V have dimension 2n and take f to be a nondegenerate skew-

symmetric form on V with matrix

[
0 In

−In 0.

]
Then we define the symplectic algebra sp(2n,F)

to be all endomorphisms x of V such that f(x(v), w) = −f(v, x(w)).

Definition 7.4. Dn≥2 : We let V have dimension 2n and define f to be a nondegenerate

symmetric bilinear form on V with matrix

[
0 In
In 0.

]
Then we define norther orthogonal

algebra o(2n,F) to be all endomorphisms x of V such that f(x(v), w) = −f(v, x(w)).

As we have constructed the simple Lie algebras, we can move on to Dynkin diagrams and
the classification theorem.

Definition 7.5. The Dynkin diagram of a root system is created by drawing a node ◦ for
each simple root and joining two roots α and β with −nβα.

Furthermore, the edges of a Dynkin diagram are directed to denote root size.If the Dynkin
diagram corresponding to a root system is connected, the system is irreducible. And because
each Dynkin diagram corresponds to a unique root system of a semisimple Lie algebra, we
determine the possible connected Dynkin diagrams for semisimple Lie algebra g. Before
we classify the Dynkin diagrams of semisimple Lie algebras, we view an easier analogue
of Dynkin diagrams, Coexter diagrams. A Coexter diagram with n nodes corresponds to
the system (e1, . . . , en) of linearly independent unit vectors in E. The angle between two
of these vectors is kπ

k+1
for 1 ≤ k ≤ 5. And since these vectors are unit vectors, we have

(ei, ej) = cos(θ)∥ei∥∥ej∥ = cos(θ). We call a diagram admissable if it corresponds to such a
system. For any admissable diagram, directing the arrows produces a Dynkin diagram as
one can scale the vectors to have the relation in size required by the directions.
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Theorem 7.6. All complex semisimple Lie algebras have one of the following Dynkin dia-
grams:

An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Remark 7.7. Although we were able to define the simple Lie algebras, there is no way to con-
struct the exceptional Lie algebras E6, E7, E8, F4, G2 besides stating their Dynkin diagrams.
Although we do not prove so, the Dynkin diagrams shown are the ones corresponding with
the family of simple Lie algebras denoted on the left.

We state the key details that when proved, are able to prove this classification theorem.
Let N be an admissable diagram with n nodes.

(1) A subdiagram of N, created by removing nodes and the lines connected to those
nodes is admissable.

(2) The number of pairs of connected nodes is at most n− 1.
(3) N does not have any loops.
(4) No node has a degree greater than 3.
(5) The only admissable diagram with a pair of nodes with three lines between them is

the Coexter diagram corresponding with G2.
(6) Any string of nodes connected to each other by one line with only the ends of the

string connected to other nodes can be collapsed into one node to create an admissable
diagram.

(7) N does not admit any subdiagram of a string of nodes where the endpoints are
connected with two lines to their adjacent node and all other nodes are connected by
one line to their adjacent nodes (besides the adjacent nodes to the endpoints).

(8) N does not admit any subdiagram that is constructed from the Coexter diagram of
Dn with two lines between the left-most node and its adjacent.

(9) N does not admit any subdiagram of the form with the upper left node filled in as

well.
(10) The Coexter diagram of a string of 5 nodes with one line connecting each node except

for two lines connecting the second and third node is not admissable.

A full proof may be found in [HUM94].
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