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Why the Name?

First, ellipses are not elliptic curves.
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Figure: Example of Ellipse and Elliptic Curve
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Ok but Why?

In order to find the circumference of an ellipse, people used elliptic integrals,

4a

∫ 1

0

√
1− e2t2

1− t2
dx.

The integrand u(t) satisfies

u2(1− t2) = 1− e2t2,

defining an elliptic curve.
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Definition(s)

Definition
An elliptic curve E is a nonsingular projective curve over a field K given by the set

E = {(x, y) : y2 = x3 + ax2 + bx+ c} ∪ {O}

for some constants a, b, c in K such that the discriminant is nonzero, and the point
O is the point at infinity.

Definition
A projective curve is the set of zeros of a homogeneous polynomial of three
variables: F (x, y, z) = 0. We will assume that F has coefficients in Z.
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History

• Diophantus: Solved the earliest recorded elliptic curve (Y (a− Y ) = X3 −X)

• Fermat: He conjectured some integer solutions for y2 = x3 − 2.

• Weierstrass: Proved that all elliptic curves could take a much simpler form.

• Mordell: Studied curves of the form y2 = x3 + n, with n being a nonnegative
integer.

• Weil: Gave the first proof of the Mordell-Weil Theorem! Also chose ϕ as the
empty set symbol

• Billing, Mahler: Proved their own theorem about torsion points.
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Abelian Group Structure

A. Sarkar – Elliptic Curves 8/34



Elliptic Curves

A. Sarkar

Introduction

Abelian Group
Structure

Mordell-Weil

Billing-Mahler

Elliptic Curves
in the Real
World

Conclusion

The Group Law

Definition
On a curve, we define the addition of any two given points, P and Q to be P +Q
such that it is the negative of the third intersection of the line drawn through P
and Q and the cubic. The composition of P upon P , or P + P = 2P , is the
negative of the intersection of the tangent line to the curve at P to the curve.

Group Law:

1 Identity Element, P +O = O+ P = P

2 Inverse Element, P + (−P ) = O
3 Associativity, P + (Q+R) = (P +Q) +R

4 Commutativity, P +Q = Q+ P
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Example of Addition

P

Q

−(P +Q)

P +Q
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Example of 2P
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Closed Formula

Because of this geometric definition, one can find a closed formula for the addition
law.

We simply look at the line between two points (or the tangent), and look for
the third intersection with the line and the curve. Let

y = mx+ b

be the line of intersection of points P1 = (x1, y1), P2 = (x2, y2) ∈ E. We can find
m through the slope formula or derivatives. The closed formula for addition is then

P1 + P2 = (x1, y1) + (x2, y2) = (m2 − x1 − x2,−mx3 − b) = (x3,−y3).
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Quick Definition!

Definition
Let E be an elliptic curve over K in the form y2 = f(x). The set of K-rational
points on E is the set

{(x, y) ∈ K ×K|y2 = f(x)},

which we will denote as E(K).

The set of Q-rational points on E is equivalent to saying the set of rational points
on E.
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Mordell-Weil
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Mordell Weil Theorem

Theorem
(Mordell-Weil) For elliptic curves over the rationals Q, the group of rational points
is always finitely generated.
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Mordell Weil Theorem Definitions

Definition
For a rational number x = a

b , the height of x is given by

H(x) = max(|a|, |b|).
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Elliptic Curve Height

Definition
For an elliptic curve E over Q, the height of a rational point P = (x, y) on E is

H(P ) = H(x),H(O) = 1.

The small height of a point is simply

h(P ) = logH(P ),

or it is 0 if H(P ) = 0.
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Mordell Weil Theorem Assumptions

In order to prove Mordell-Weil, we would normally need to prove 4 different things.

• Finiteness Property of H on E(Q)

• Height of P and P0 where P0 is some given point on E satisfies
h(P + P0) ≤ 2h(P ) + κ0 where κ0 depends on a, b, c, P0.

• Doubling the point increases the height, or h(2P ) ≥ 4h(P )− κ where κ is
dependent on a, b, and c.

• Denote 2E(Q) to be the subgroup of E(Q) which contains only points of the
form 2P where P ∈ E(Q). Then, E(Q)/2E(Q) is a finite group.

A. Sarkar – Elliptic Curves 18/34



Elliptic Curves

A. Sarkar

Introduction

Abelian Group
Structure

Mordell-Weil

Billing-Mahler

Elliptic Curves
in the Real
World

Conclusion

Mordell Weil Theorem Proof

Let Q1, Q2, Q3, . . . Qn be a finite number of coset representatives. So, there is
some index 1 ≤ i1 ≤ n dependent on P such that P −Qi1 = 2P1, P1 ∈ E(Q).

We
can recursively expand on Pi to get

P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim + 2mPm.

Set P = −Qi. By the second property, we get

h(P −Qi) ≤ 2h(P ) + κi,∀P ∈ E(Q).

We can do this for each coset and get n different κi. Denote κ′ as the largest.

A. Sarkar – Elliptic Curves 19/34
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Cool Equation Time

4h(Pj) ≤ h(2Pj) + κ

= h(Pj−1 −Qij ) + κ

≤ 2h(Pj−1) + κ′ + κ
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Cooler Equation Time

h(Pj) ≤
h(Pj−1)

2
+

κ′ + κ

4

=
3

4
h(Pj−1)−

1

4
(h(Pj−1)− (κ′ + κ))

≤ 3

4
h(Pj−1)

...

h(Pm) ≤ κ′ + κ
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What the Cool Equations Mean

So, starting with h(Pj−1) ≥ κ′ + κ, as h(Pj) ≤ 3
4h(Pi−1). As j gets larger, h(Pj)

trends to 0. There must be an m such that h(Pm) ≤ κ′ + κ.

Since
h(Pm) ≤ κ′ + κ, there are a finite number of possible Pm. So,

{Q1, Q2, . . . , Qn} ∪ {Pm ∈ E(Q) : h(Pm) ≤ κ′ + κ}

finitely generate E(Q).
This proves that the group of rational points on an elliptic curve are finitely
generated.
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Billing-Mahler
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Billing Mahler Theorem

Theorem
(Billing-Mahler) An elliptic curve defined over Q does not have a rational torsion
point of order 11.
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Billing Mahler Definitions

Definition
A point P ∈ E : y2 = f(x) = x3 + ax2 + bx+ c with finite order m means that
there exists a positive integer m such that

mP = P + P + . . .+ P = O.

Definition
The set of points E[m] is the set of m-torsion points, meaning

E[m] = {P ∈ E(Q)|mP = O}.

The set of all rational torsion points on a curve E will be denoted as E(Q)tors.
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An example of E[2]

It may be interesting to some that E[m] ∼= Zm × Zm . A further proof of this is
within [1].
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Billing Mahler Proof Outline

Assume to the contrary that there is an 11-torsion point on some curve E.

We can
then look at multiples of this point in the projective plane and lines between points.
Multiples of rational points on a curve are rational, so we can show with the
assumption there are more than 5 rational points. Through remapping of
coordinates, we can then try to find the number of rational points on

E : y2 = x3 − 4x2 + 16.

By [2], the solution set E(Q) has order 5. So, we would need to show that the rank
of this is 0, as then it would mean that there are exactly 5 rational points on E,
and no more.
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Billing Mahler Proof Outline

This now becomes an algebraic number theory problem. Due to time constraints, I
will not actually prove this in the talk. Sorry!

However, there are only 5 rational
points on that curve, contradicting the original claim of there being any 11-torsion
points! People spent a long time searching for one . . .
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Elliptic Curves in the Real World
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Elliptic Curve Cryptography

ECC, or Elliptic Curve Cryptography, is an extremely powerful form of cryptography
used today. This is a lot more secure than RSA, because elliptic curves on their
own are much harder to understand. By applying it to a finite field, the group law
still holds, providing a pretty strong encryption service.

The reason torsion points
are interesting is because of how ECC determines what secret code to send. It
takes the secret message, a, and some original point P , and sends the message aP .
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ECC, or Elliptic Curve Cryptography, is an extremely powerful form of cryptography
used today. This is a lot more secure than RSA, because elliptic curves on their
own are much harder to understand. By applying it to a finite field, the group law
still holds, providing a pretty strong encryption service. The reason torsion points
are interesting is because of how ECC determines what secret code to send. It
takes the secret message, a, and some original point P , and sends the message aP .
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Conclusion

I hope that gives a healthy synopsis on elliptic curves and at least one of their uses!

A. Sarkar – Elliptic Curves 32/34



Elliptic Curves

A. Sarkar

Introduction

Abelian Group
Structure

Mordell-Weil

Billing-Mahler

Elliptic Curves
in the Real
World

Conclusion

References I

J. H. Silverman, The arithmetic of elliptic curves, vol. 106.
Springer, 2009.

T. Nagell, “Sur les propriétés arithmétiques des cubiques planes du premier
genre,” Acta mathematica, vol. 52, pp. 93–126, 1929.

A. Sarkar – Elliptic Curves 33/34



Elliptic Curves

A. Sarkar

Introduction

Abelian Group
Structure

Mordell-Weil

Billing-Mahler

Elliptic Curves
in the Real
World

Conclusion

Thank you!

Thank you for listening! Questions?
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