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AGNIV SARKAR

Abstract. The goal of this expository paper is to provide ex-
position and an understanding of two beautiful theorems to de-
scribe elliptic curves, specifically the Mordell-Weil Theorem and
the Billing-Mahler theorem. This paper assumes a strong under-
standing of group theory, a basic understanding of number theory,
modular arithmetic, and geometry, and a very light understanding
of linear algebra.
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1. Introduction

The solutions to polynomial equations, especially those of the ratio-
nal form, have been under great interest for over 1800 years, starting
with Diophantine equations. Rational solutions are generally of the
form (x1, x2, . . . , xn) ∈ Q. In order to find rational solutions for lin-
ear equations, one can utilize linear algebra to solve them incredibly
fast (with a time of O(n2.332) [1], where n is the number of unknown
variables). Quadratic equations with two variables are also well under-
stood, as they can be solved with quadratic reciprocity and Hensel’s
Lemma [2].

However, there is some complexity that appears when one aims to
find rational solutions for cubics defined in three variables. (Note: this
type of increasing dimensions adding a larger amount of complexity
is very common within math!). This paper will focus specifically on
elliptic curves, as they have an addition law and group structure that
leads to interesting results. It is interesting to look at how elliptic
curves are related to ellipses.
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Figure 1. Example of Ellipse and Elliptic Curve

Ellipses are conic sections, and are given by quadratic equations
instead of the cubics that we aim to study. The reason that these
curves carry on the name is due to how these curves appeared when
mathematicians wanted to compute the circumference of an ellipse [3].



MORDELL-WEIL AND BILLING-MAHLER THEOREMS 3

An example would be starting with the equation for an ellipse (such
that b < a).

x2

a2
+
y2

b2
= 1

In order to find the circumference, we have to integrate and use the
arc length formula.

y = f(x) = ±b
√

1− x2

a2

f ′(x) = ∓ bx

a2
√

1− x2

a2

= ∓ rx√
a2 − x2

where r =
b

a
< 1

4

∫ a

0

√
1 + f ′(x)2dx = 4

∫ a

0

√
1 +

r2x2

a2 − x2
dx

Substitute x = at and e =
√
1− r2 to get

4a

∫ 1

0

√
1− e2t2

1− t2
dx.

This is an elliptic integral. The integrand u(t) satisfies

u2(1− t2) = 1− e2t2

This equation defines an elliptic curve. This is how the two different
equations share the same name.

2. Group Structure

An elliptic curve is a cubic curve that can be defined over any field
K, such as Fp,Q,R,C, . . .. This curve naturally forms a group struc-
ture through a geometrical definition. Over a finite field, the group is
similarly finite.

Definition. An elliptic curve E is a nonsingular curve over a field K
given by the set

E = {(x, y) : y2 = x3 + ax2 + bx+ c} ∪ {O}
for some constants a, b, c in K such that the discriminant is nonzero,
and the point O is the point at infinity.

The requirements for an elliptic curve are simple to understand. For
the curve to be nonsingular, E has distinct roots. Now we will under-
stand the group structure. In order for elliptic curves to form a group,
they must have an addition function and an identity element. We shall
define both.
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Definition. On a curve, we define the addition of any two given points,
P and Q to be P+Q such that it is the negative of the third intersection
of the line drawn through P and Q and the cubic. The composition of
P upon P , or P + P = 2P , is the negative of the intersection of the
tangent line to the curve at P to the curve.

Why the third intersection? This turns out to be a special case of
Bezout’s Theorem, which states that the intersections of two different
curves of degree m and n contain mn points. So, the line and the curve
should have 3 points.

Side note, the negative of a point P = (x, y) is simply −P = (x,−y).
Now that we have an addition function, we need an identity element.
We should then consider the question, what does P + (−P ) give us if
P = (a, 0) and P ∈ E?

Clearly, it does not intersect the line at a third point. Since there
is no point in the plane that corresponds to it, we shall define it to be
the point at infinity, O. In other words, O is a point on every vertical
line.

So, let us write out the abelian group structure so far.

(1) P +O = O+ P = P
(2) P + (−P ) = O
(3) P + (Q+R) = (P +Q) +R
(4) P +Q = Q+ P

Another thing that is caused by our group law is that for points
P,Q,R ∈ E, they are collinear if and only if P + Q + R = O. These
can all be proven with algebra relatively simply (except for (3)) but the
geometrical understanding is key. The proof of (3) however is a very
long computation with explicit formula. A proof can be found within
[4].

2.1. Addition Law. Let us get a closed formula for the addition law.
If P = (x1, y1) and Q = (x2, y2) and both are on some elliptic curve E,
then we must first find the line intersecting them. This would be

y = mx+ b,

where

m =

{
y2−y1
x2−x1

if P1 ̸= P2

3x2
1+2ax+b

2y1
if P1 = P2

and b = y1 −mx1

Now, we must find the third intersection of E with this line. This now
becomes

(mx+ b)2 = x3 + ax2 + bx+ c.
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As we know some roots, we can write

x3 + ax2 + bx+ c− (mx+ b)2 = (x− x1)(x− x2)(x− x3)

and solve for x3. This simplifies nicely into

x3 = m2 − x1 − x2 and y3 = mx3 + b

so that we get that

P1 + P2 = (x1, y1) + (x2, y2) = (m2 − x1 − x2,−mx3 − b) = (x3,−y3).
We now have an algebraic form of the addition rule. Let us define

one more thing.

Definition. Let E be an elliptic curve over K in the form y2 = f(x).
The set of K-rational points on E is the set

{(x, y) ∈ K ×K|y2 = f(x)},
which we will denote as E(K).

The set of Q-rational points on E is equivalent to saying the set of
rational points on E. If we already have points belonging to E(Q),
then we need to figure out a procedure to find other ones. We have
already seen the algebraic expansion of the addition law, meaning that
if we have points P,Q ∈ E(Q), then we know −P,−Q,P + Q,−(P +
Q), (−P ) +Q,P + (−Q) are also in E(Q).

It is pretty elegant how this geometrical definition translated into an
algebraic one, meaning we can carry the + function to other fields. I
will introduce one other way to define curves.

2.2. Projective Plane.

Definition. A projective curve is the set of zeros of a homogeneous
polynomial of three variables: F (x, y, z) = 0. We will assume that F
has coefficients in Z. We recall that F (x, y, z) is homogeneous of degree
d if F (kx, ky, kz) = kdF (x, y, z) for all constants k.

This is a curve in three variables, although it is easy to translate a two
variable curve into this. Let x = X

Z
and y = Y

Z
, which lets f(X

Z
, Y
Z
) = 0

be equal to saying f(X, Y, Z) = 0. In other words, F (X, Y, Z) =
Zdf(x, y). The reason we need this definition is to make use of the
projective plane. We will not touch heavily on this.

Consider the set of all triples (X, Y, Z) ∈ C3 excluding the origin
point. Then, let’s consider the equivalence relation, where a triple
(X, Y, Z) is equivalent to (λX, λY, λZ), or in other words, all lines
passing through where the origin would contain equivalent points.



6 AGNIV SARKAR

The projective plane, P2 is the set of equivalence classes of this equiv-
alence relation. This would be written as,

P2(C) = {(X, Y, Z)|X, Y, Z ∈ C}/ = {[X : Y : Z]}.

In other words, [1 : 2 : 3] is the same point as [−0.5,−1,−1.5].
Why is this relevant? Because of the equivalence relation we have,

we can always make [X, Y, Z] = [X
Z
, Y
Z
, 1] given a nonzero Z. So, if

F (X, Y, Z) = 0 for some nonzero Z, then (x, y) = (X
Z
, Y
Z
) is the same

as the original curve f(x, y). When Z = 0, however, the curve contains
points at infinity.

Now let’s write what an elliptic curve looks like in the projective
plane,

Y 2Z = X3 + aX2Z + bXZ2 + cZ3.

We can see now what it means for Z = 0. This would leave the equation
0 = X3, meaning that the only points on this line are [0 : 1 : 0]. This
is the intersection of the curve with the line at infinity Z = 0. This is
the point at infinity O = [0 : 1 : 0]!

We will now think about how to find rational solutions to this. Ellip-
tic curves are unique due to not having a really clear way of finding ra-
tional solutions. The rational root theorem can find solutions for poly-
nomials in one variable, linear equations in two variables always have
infinite rational solutions, and quadratics are relatively well-understood
by the use of conics. In order to find rational solutions to this, we have
to utilize the geometric and algebraic definitions of the group structure.

3. Mordell-Weil Theorem

3.1. Setup.

Theorem 1. (Mordell-Weil) For elliptic curves over the rationals Q,
the group of rational points is always finitely generated.

Proof. Let E : y2 = x3 + ax2 + bx+ c be an elliptic curve over Q with
integer coefficients. First, we need to define a height function. Let us
define it for a rational point.

Definition. For a rational number x = a
b
, the height of x is given by

H(x) = max(|a|, |b|).

So, we can see that the set of all rational points who have a height
less than a given x is finite. Now, can extend this to an elliptic curve.
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Definition. For an elliptic curve E over Q, the height of a rational
point P = (x, y) on E is

H(P ) = H(x),H(O) = 1.

The small height of a point is simply

h(P ) = logH(P ),

or it is 0 if H(P ) = 0, and it is a nonnegative function.

In order to prove Mordell-Weil, we need to prove 4 different things.

• Finiteness Property of H on E(Q)
• Height of P and P0 where P0 is some given point on E satisfies
h(P + P0) ≤ 2h(P ) + κ0 where κ0 depends on a, b, c, P0.

• Doubling the point increases the height, or h(2P ) ≥ 4h(P )− κ
where κ is dependent on a, b, and c.

• Denote 2E(Q) to be the subgroup of E(Q) which contains only
points of the form 2P where P ∈ E(Q). Then, E(Q)/2E(Q) is
a finite group.

The first says that the set {P ∈ E(Q)|H(P ) < C}, for some given
number C is a finite set. This is true simply because of the finiteness
property on the rationals, and this is a subset of those numbers. A
subset of a finite set is finite.

3.2. Height of P + P0.

Lemma 1. Let P0 be a fixed rational point of E. There is a constant
κ0 that depends on P0 and on a, b, and c, so that

h(P + P0) ≤ 2h(P ) + κ0,∀P ∈ E(Q)

Proof. First, we must notice that if (x, y) ∈ E(Q), then we can write
x and y in the form

x =
m

e2
and y =

n

e3
,

where m,n, e ∈ Z such that e > 0 and gcd(m, e) = gcd(n, e) = 1. This
is because if we write

x =
m

M
and y =

n

M
in lowest terms with positive denominators, and then we substitute
these into E, we get

n2

M2
=
m3

M3
+ a

m2

M2
+ b

m

M

M3n2 = N2m3 + aN2Mm2 + bN2M2m+ cN2M3.
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This shows that N2|M3n2, and as gcd(n,N) = 1, N2|M3. Now we have
to prove the converse. Similarly, we see that M |N2m3, and because
gcd(m,M) = 1, then M |N2. If we refer back to the equation, we see
that this would mean M3|N2m3, so M3|N2, meaning M3 = N2. So,
let e = N

M
, which means

x =
m

M
=

m
M3

M2

=
m
N2

M2

=
m

e2

y =
n

N
=

n
N3

N2

=
n
N3

M3

=
m

e3
.

So we can write the rational points on the curve in the given form.
So, given a point P = (m

e2
, n
e3
) ∈ E(Q), then we can see that

|m| ≤ H(P ) and e2 ≤ H(P ).

We can get better bounds. We want to show that for some constant
K > 0,

|n| ≤ KH(P )
3
2 , ∀P ∈ E(Q).

This is relatively simple. Because we know P satisfies the equation
defining E, by multiplying that equation by e6 gives us

n2 = m3 + ae2m2 + be4m+ ce6.

By taking absolute values and using the triangle inequality, it follows

|n2| ≤ |m3|+ |ae2m2|+ |be4m|+ |ce6|
≤ H(P )3 + |a|H(P )3 + |b|H(P )3 + |c|H(P )3

= H(P )3(1 + |a|+ |b|+ |c|).

So, K =
√

1 + |a|+ |b|+ |c|, meaning we now have a lower and upper
bound for H(P ) given a point P .

The rest of the proof, albeit long, is just expansions of formulas and
the triangle inequality.

Note that if P0 = O, then the lemma is trivial, so let us assume
that P0 is not the point at infinity, rather it has the form (x0, y0), and
similarly, we will only focus on P ∈ {P0,−P0,O}. So, let P = (x, y).
We write

P + P0 = (ξ, η),

and so H(P ) = H(ξ). We need to find the formula for ξ in terms of
(x, y) and (x0, y0). Through the formula that we derived earlier, we
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can write

ξ =
(y − y0)

2

(x− x0)2
− a− x− x0

=
(y − y0)

2 − (x− x0)
2(x+ x0 + a)

(x− x0)2
.

Under expansion y2−x3 appears in the numerator, and as such we can
replace that with ax2 + bx+ c. Doing this results in

ξ =
Ay +Bx2 + Cx+D

Ex2 + Fx+G
,

where A,B,C,D,E, F,G are rational numbers that simplify the terms
of a, b, c, x0, y0. We can also say that they are integers by multiply-
ing the numerator and denominator by the least common multiple of
A,B,C,D,E, F,G. So, we can assume they are all integers. Because
these are independent of x and y, then we can define κ0 with these
variables.

If we substitute x and y into m
e2

and n
e3

respectively, then

ξ =
Ane+Bm2 + Cme2 +De4

Em2 + Fme2 +Ge4
.

Now, ξ is represented as an integer over an integer (albeit not neces-
sarily coprime). So,

H(ξ) ≤ max(|Ane+Bm2 + Cme2 +De4|, |Em2 + Fme2 +Ge4|).

Remember that

e ≤
√

H(P ), n ≤ KH(P )
3
2 , and m ≤ H(P ),

where K can be written with terms a, b, and c. We can now use these
all and the triangle inequality to show

|Ane+Bm2 + Cme2 +De4| ≤ |Ane|+ |Bm2|+ |Cme2|+ |De4|
≤ |AK|+ |B|+ |C|+ |D|H(P )2

|Em2 + Fme2 +Ge4| ≤ |Em2|+ |Fme2|+ |Ge4|
≤ |E|+ |F |+ |G|H(P )2.

This tells us that

H(P+P0) = H(ξ) ≤ max(|AK|+|B|+|C|+|D|, |E|+|F |+|G|)H(P )2.

By taking the logarithm,

h(P +P0) ≤ 2h(P )+logmax(|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|).



10 AGNIV SARKAR

Then, κ0 = max(|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|) and we have
found a constant that only depends on a, b, c and x0, y0, independent
of x, y.

□

3.3. Height of 2P .

Lemma 2. There is a constant κ, depending on a, b, and c, so that

h(2P ) ≥ 4h(P )− κ,∀P ∈ E(Q).

Proof. Again, let P = (x, y) and then let 2P = (ξ, η). Because the set
of 2-torsion points is finite, we don’t have to consider it (we simply
find the maximum possible κ). So, let 2p ̸= O. Again, we can use our
duplication formula to see

ξ =
f ′(x)2 − (8x+ 4a)f(x)

4f(x)
,

and note that f(x) ̸= 0. This means that ξ is a polynomial over a
polynomial, both with integer coefficients, and also these polynomials
have no common complex roots. What we now want to show is

h(ξ) ≥ 4h(x)− κ.

So now we want to think about the height of a polynomial.

Lemma 3. Let Φ(X) and τ(X) be polynomials with integer coeffi-
cients and no common complex roots, with the maximum of the de-
gree’s being d. Then, there is an integer R ≥ 1, depending on Φ and τ
such that

gcd(ndΦ
(m
n

)
, ndτ

(m
n

)
)|R.

Also, there are constants κ1 and κ2 dependent on the polynomials so
that for all rational numbers m

n
that are not roots of τ ,

dh
(m
n

)
− κ1 ≤ h

(
Φ
(
m
n

)
τ
(
m
n

)) ≤ dh
(m
n

)
+ κ2.

Proof. First, note that ndΦ
(
m
n

)
, ndτ

(
m
n

)
∈ Z as the degree of the

polynomials are at most d, which makes sense for the greatest common
denominator. Without loss of generality, let deg(Φ) = d and deg(τ) =
e ≤ d. Let ϕ(m,n) = ndΦ

(
m
n

)
and Ψ(n,m) = ndτ

(
m
n

)
. Because ϕ(X)

and τ(X) have no common roots, they are coprime in the ring Q[X],
which means that we can find two other polynomials F (X) and G(X)
such that

F (X)ϕ(X) +G(X)ψ(X) = 1.
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Let A be the least common multiple of the denominators of the coef-
ficients of terms within F (X) and G(X), and let D be the maximum
degree of F and G. Then, by plugging in X = m

n
and multiplying both

sides by AnD+d we get

nDAF
(m
n

)
· ndϕ

(m
n

)
+ nDAG

(m
n

)
· ndτ

(m
n

)
= AnD+d.

Let polynomial γ(m,n) be the greatest common divisor of ϕ(m,n) and
Ψ(m,n). Then, we can see that γ|AnD+d. We can also see that since
γ|ϕ(m,n), it also divides

AnD+d−1ϕ(m,n) = Aa0m
dnD+d−1 +Aa1m

d−1nD+d + . . .+Aadn
D+2d−1.

where ai is the coefficient of the term Xd−i in Φ(X)’s expansion. What
this then tells us is that γ|Aa0mdnD+d−1, as all the other terms are
divisible by AnD+d. So,

γ| gcd(AnD+d, Aa0m
dnD+d−1),

and as gcd(m,n) = 1, we can see that γ|Aa0nD+d−1. Notice that we
have decrease the exponent of n in that term. Our end goal is to get rid
of it. So, we can repeat this process. We can see γ|Aa0nD+d−2ϕ(m,n),
and with the argument outlined above, γ|Aa20nD+d−2. We can do this
until γ|AaD+d

0 . So, this means that

gcd(ndΦ
(m
n

)
, ndτ

(m
n

)
)|AaD+d

0 ,

or there is a value that the greatest common denominator divides that
is only dependent on the polynomials themselves.

So, now we have to prove the second part, which is two inequalities.
The proof of the upper bound follows similarly to the proof of the
previous property of h(x). The lower bound is much more interesting.
First, assume m

n
is not a root of Φ, as otherwise the problem would be

reduced to a finite set of rationals inputted into the equation, meaning
we could just choose the maximum possible κ1.

If r is any non-zero rational number, then h(r) = h(1
r
), as the func-

tion returns the maximum of the numerator and denominator. Again,
we will force the degree of the polynomials with the same numbers as
before. So, we want to calculate the height of

ξ =
Φ
(
m
n

)
τ
(
m
n

) =
ϕ(m,n)

Ψ(m,n)
,
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and these are integers, which means thatH(ξ)|max(|ϕ(m,n)|, |Ψ(m,n)|).
We know that for some R,

H(ξ) ≥ 1

R
max(|ϕ(m,n)|, |Ψ(m,n)|)

≥ 1

2R

(∣∣∣ndΦ
(m
n

)∣∣∣+ ∣∣∣ndτ
(m
n

)∣∣∣) .
This works because max(a, b) ≥ 1

2
(a+ b). Also,

H(
m

n
)d = max(|m|d, |n|d).

Then,

H(ξ)

H
(
m
n

)d ≥ 1

2R
·
∣∣ndΦ

(
m
n

)∣∣+ ∣∣ndτ
(
m
n

)∣∣
max(|m|d, |n|d)

=
1

2R
·
∣∣Φ (m

n

)∣∣+ ∣∣τ (m
n

)∣∣
max(

∣∣m
n

∣∣d , 1) .

So, we want to look at the function

p(t) =
|Φ (t)|+ |τ (t)|
max(|t|d , 1)

.

We can first notice that

lim
|t|−→∞

p(t) ̸= 0,

as the degree of Φ(X) is d. So, this limit is either |a0| or |a0|+ |b0| (if
deg(τ) = d) where a0 and b0 are the leading coefficients of the terms
in Φ and τ . However, within some closed interval, we can say that
p(t) is continuous, as the polynomials have no common roots. Also, as
this function is never 0, we know that it is a positive function that is
bounded away from 0 everywhere. So, there is some minimum value
that such that C1 ≤ p(t).
We can then write

H(ξ)

H
(
m
n

)d ≥ 1

2R
· p
(m
n

)
≥ C1

2R
.
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So,

H(ξ) ≥ C1

2R
·H
(m
n

)d
h(ξ) ≥ dh(

m

n
)− log

(
2R

C1

)
,

and that means that κ1 = log
(

2R
C1

)
and we have found a lower bound.

This concludes the proof of that lemma. □

Because the original ξ we were looking at looked like two polynomials
over each other, specifically

ξ =
3a2x2 + 3abx− ac+ 3ax3 + b2 − 2bx2 − 8cx+ x4

4(ax2 + bx+ c+ x3)
,

we can use the lemma that we just proved to finish the proof. We see
that

h(ξ) ≥ 4h(x)− κ,

which means that we have found some constant κ, completing the proof.
□

3.4. Finiteness of E(Q)/2E(Q).

Lemma 4. The index of E(Q)/2E(Q) is finite.

Proof. This is the hardest lemma. To ease the difficulty, we will assume
that the function f(x) defining E has a root in the rational numbers,
say x0, which is the same as saying x0 ∈ Q ∩ E[2]tors. It is possible
to prove it without this, but that dives into algebraic number theory.
While that will show up with the Billing-Mahler Theorem, I would
rather not bring it up here to keep this section of the paper more
approachable.

As x0 is a root and the coefficients of the function are integers, x0
is also an integer. This means that we can shift f(x) such that (x0, 0)
is the origin. This means in our new coordinates the curve has the
equation

E : y2 = f(x) = x3 + ax2 + b.

This means that the point P = (0, 0) ∈ E such that 2P = O. We can
then take the discriminant to be D = b2(a2 − 4b), and we will assume
D ̸= 0, which means that b ̸= 0 and a2 − 4b ̸= 0.

Let us look at how the point P ∈ E is transformed to 2P . By looking
at the x-coordinate of these points, we can say that this transformation
is of degree 4. So, we can split this into two different functions of
degree two, sending E −→ E −→ E, where E is the range of the
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first function and the domain of the second. This curve is defined with
E : y2 = x3−2ax+(a2−4b)x. What happens if we apply this procedure
(changing a to −2a and b to (a2 − 4b))?

The resulting curve is E : y2 = x3 + 4a+ 16bx. This is just a scaled
version of E, as we can replace x with 4x and y with 8y to return to E.
Then, E(Q) is isomorphic (there is a bijection between the elements)

to E(Q).
So, let us define the group homomorphisms (transformations that

preserve the relationship between elements) Φ : E −→ E, and similarly,

Φ : E −→ E. Then, because E ∼= E, Φ ◦ Φ is a homomorphism that
sends C to itself, which is the multiplication by 2 mapping of points.

So, we need to look at Φ. If P = (x, y) ∈ E with nonnegative x,

then Φ(x, y) = ( y
2

x2 ,
(

x2−b
x2

)
). To verify this, one can plug this into the

equation for E, and it is left up to the reader if they want to prove it
for themselves.

So, we need to consider the points (0, 0) and O. We can simply
put Φ(0, 0) = O and Φ(O) = O. This may seem all arbitrary, but
this mapping is actually simple algebra and arithmetic. It is possible
to describe this mapping analytically, which does deliver a stronger
understanding of this function, but is not necessary.

What is the kernel of Φ, or the elements in E sent to O under Φ?
With the algebraic formula for Φ that we gave earlier, we can see that
O and (0, 0) are the only two elements within the kernel. With the
explicit formula, it can be shown that Φ is a homomorphism. It can
also be shown that with the mapping

Φ(P ) =

{(
y2

x2
, y(x

2−(a2−4b))

x2

)
if P = (x, y) ̸= O, (0, 0)

O if P = O or P = (0, 0)

we can then get that
Φ ◦ Φ(P ) = 2P

with the explicit formulas.
Now, we can finish up the proof of Mordell’s Theorem. Just to recap,

we have elliptic curves

E : y2 = x3 + ax2 + b and E : y2 − 2ax+ (a2 − 4b)x,

and the homomorphisms

Φ : E −→ E and Φ : E −→ E,

such that the compositions

Φ ◦ Φ : E −→ E and Φ ◦ Φ : E −→ E
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both describe the multiplication of points by 2, with the kernels of Φ
containing O, (0, 0) and of Φ containing O, (0, 0) respectively. Let us
define the image of E(Q) by Φ as the subgroup of rational points that
are mapped by Φ into E(Q). We claim that for the image of Φ that

• O ∈ Φ(E(Q))
• (0, 0) ∈ Φ(E(Q) if and only if a2 − 4b is a perfect square
• Let P = (x, y) ∈ E(Q) with x ̸= 0. Then P ∈ Φ(E(Q)) if and
only if x is the square of a rational number.

The first statement follows instantly, as Φ(O) = O. The second state-
ment follows from the formula. We can see that a point P satisfies

P ∈ Φ(P ) if and only if P = (x, y) such that y2

x2 = 0. Because the
precondition of x ̸= 0, as otherwise it would be the same as the first
statement. So, in order for this to be true, y = 0. So, for a point P ̸= O
to be in the image of Φ on E(Q), then if the original point in E(Q) has
x ̸= 0 and y = 0. Plugging in y = 0 for the equation of E(Q), we get

0 = x(x2 + ax+ b).

This has a nonzero rational root if and only if the discriminant of this
equation is not irrational, or if a2 − 4b is a square.

Now, let’s look at the third statement. If (x, y) ∈ Φ(E(Q)) is a point

such that x ̸= 0, then the formula for Φ shows that y2

x2 = x is the square
of some rational number. Conversely, assume that x = w2, for some
rational w. Then, let us try to find a point in E(Q) such that it maps
to x.
Because Φ has two elements in its kernel, then two points map to

(x, y), specifically

x1 =
1

2

(
w2 − a+

y

w

)
, y1 = x1w

x2 =
1

2

(
w2 − a− y

w

)
, y2 = −x2w

We claim that Pi = (xi, yi) ∈ E(Q) and that Φ(Pi) = (x, y) for i = 1, 2.
Since these are rational points, this would prove that (x, y) is in the
image of Φ.
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We can write out the equations for the points together

x1x2 =
1

4

(
(w2 − a)2 − y2

w2

)
=

1

4

(
(x− a)2 − y2

x

)
=

1

4

(
x3 − 2ax2 + a2x− y2

x

)
= b.

So, to show that Pi lies within E(Q), we need to show that

y2i
x2i

= xi + a+
b

xi
.

Because we just showed that b = x1x2, and since we have yi
xi

= ±w,
this is the same as showing

w2 = x1 + a+ x2.

This follows instantly from expanding x1 and x2. So, we need to check
that Φ(Pi) = (x, y), which can be done through explicit formula. So,
the third statement is proven.

What we want to prove is that 2E(Q) has finite index within E(Q).
This would follow if we showed that (E(Q) : Φ(E(Q))) has finite index,
or if the index is bounded. From the previous three statements we know
that Φ(E(Q)) is the set of points within E(Q) such that x is a nonzero
rational square, O, or (0, 0) if b is a square number. In order to prove
that this is a finite group, we want to find a homomorphism from the
quotient group E(Q)/Φ(E(Q) to a finite group.
Let Q∗ be the multiplicative group of non-zero rational numbers, and

let Q∗2 be the subgroup of Q∗ containing squares of rational numbers.
Then, we can introduce the map α : E(Q) −→ Q∗/Q∗2 by defining it
to be

α(O) = 1 (mod Q∗2),

α((0, 0)) = b (mod Q∗2),

α((x, y)) = x (mod Q∗2) if x ̸= 0.

Now we want to show that α is a homomorphism and that the kernel
of this mapping is the image of Φ. So let us look at a proposition for
this mapping.

Proposition 1. This describes the mapping α, as defined before.

• The map α : E(Q) −→ Q∗/Q∗2 is a homomorphism.



MORDELL-WEIL AND BILLING-MAHLER THEOREMS 17

• The kernel of α is the image Φ(E(Q)). Then, α is an injective
homomorphism

E(Q)/Φ(E(Q)) −→ Q∗/Q∗2

• Let p1, p2, . . . , pt be the distinct primes dividing b. Then the
image of α is contained in the subgroup of Q∗/Q∗2 consisting of

{±pϵ11 pϵ22 . . . pϵtt : each ϵi equals 0 or 1.}

• The index
(
E(Q) : Φ(E(Q))

)
is at most 2t+1.

Proof. Each item corresponds to the one in the proposition.

• First, we can observe that α sends inverses to inverses, because

α(−P ) = α((x,−y)) = x =
1

x
· x2,

so,

α(−P ) ≡ 1

x
=

1

α((a, y))
= α(P )−1 (mod Q∗2).

So, to prove that it is a homomorphism, or that the relations
between points hold, we need to show that whenever P1 +P2 +
P3 = O, then α(P1) + α(P2) + α(P2) ≡ 1 (mod Q∗2).

So, the triples of points that add to the point at infinity are all
collinear, meaning that there exists a line y = λx+v coinciding
with these points on x-coordinates x1, x2, x3 correspondingly.
We saw that this means that these are the roots of the equation

x3 + (a− λ2)x2 + (b− 2λv)x+ (c− v2) = 0,

for the cubic y2 = x3 + ax2 + bx+ c. Then by Vieta’s,

x1 + x2 + x3 = λ2 − a,

x1x2 + x1x3 + x2x3 = b− 2

x1x2x3 = v2 − cλv.

Using the last equation, because c for us is 0, we see that
x1x2x3 = v2 ∈ Q2. So,

α(P1)α(P2)α(P3) = x1x2x3 = v2 ≡ 1 (mod Q∗2).

This shows that these points are distinct from O and (0, 0). The
other two cases follow as well, due to how we defined α.

• With the definition of α and the description of Φ(E(Q)) with
the three statements before, it follows that the kernel of α is
Φ(E(Q))
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• Now we want to figure out which rational numbers can be x
coordinates in E(Q). We know that those points have the form
x = m

e2
and y = n

e3
for integer n,m, e, such that x is in the

lowest form. Through substitution and clearing denominators,

n2 = m3 + am2e2 + bme4 = m(m2 + ame2 + be4).

So, the square of n is the product of two integers. If the two
terms in the right were relatively prime, they would have to be
plus or minus a square, so x = m

e2
would be plus or minus the

square of some rational number. Generally, let

d = gcd(m,m2 + ame2 + be4).

This means that d|m, be4. However, those are relatively prime,
because we assumed that x was written in the lowest terms.
This means that d|b.

Then, the greatest common divisor of m and m2+ame2+be4

divides b. Since n2 is the product of those two, every prime
dividing m appears to an even power except maybe sometimes
for primes dividing b. Therefore,

m = ±(integer)2 · pϵ11 pϵ22 . . . pϵtt ,
where ϵi ∈ {0, 1}, and p1 . . . pt are the distinct primes dividing
b. This would prove

α(P ) = x =
m

e2
≡ ±pϵ11 pϵ22 . . . pϵtt (mod Q∗2),

and then the image of α is within the group Q∗/Q∗2. If x =
0, then a((0, 0)) = b (mod Q∗2) shows the third part of the
proposition.

• The subgroup described before has exactly 2t+1 elements. The
second part of the proposition says that there is a one to one
mapping to this subgroup from E(Q)/Φ(E(Q)), meaning that
the index of Φ(E(Q)) inside E(Q) has at most 2t+1.

□

Now, we can finally begin to fully prove this. There is one final
lemma. We have shown that

(
E(Q) : Φ(E(Q))

)
and

(
E(Q) : Φ(E(Q))

)
are finite. Then, we want to prove that 2E(Q) has finite index in E(Q).

Because Φ(E(Q)) has finite index in E(Q), we can find coset repre-
sentatives a1, a2, a3, . . . , an. Similarly, denote b1, b2, . . . , bm as the coset
representatives of Φ(E(Q)) in E(Q). We can claim that

{ai + Φ(bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
includes a complete set of coset representatives of 2E(Q) in E(Q).
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In order to show this, let P ∈ E(Q). To prove the claim, we need to
show that P can be written as the sum of an element of this set and an
element of 2E(Q). Because of coset representatives, we can find some
ai such that P − ai ∈ Phi(E(Q)), say that a − ai = Φ(P ). Also, we
can find some bj such that b− bj = Φ(P ′). Then,

P = ai + Φ(P ) = ai + Φ(bk + Φ(P ′))

= ai + Φ(bj) + Φ(Φ(P ′))

= ai + bj + 2P ′.

This proves that 2E(Q) has finite index in E(Q).
So, with all of this, we have proven that E(Q)/2E(Q) is finite.

□

With all of these, we can finally prove the Mordell-Weil Theorem.

3.5. Proof. Let

h : E(Q) −→ [0,∞)

with the following four properties

• The set {P ∈ E(Q) : h(P ) ≤ C} for some given C is finite.
• h(2P ) ≥ 4h(P )− κ,∀P ∈ E(Q)
• h(P +Q) ≤ 2h(P ) + κ0,∀P ∈ E(Q)
• E(Q)/2E(Q) is finite

Note that this function is the height function from before, and we
have proved that it exists. So, let E(Q)/2E(Q) = n, and letQ1, Q2, Q3, . . . Qn

be a finite number of coset representatives. So, we can say that for
any P ∈ E(Q), P is within some coset as well. So, there is some
index 1 ≤ i1 ≤ n dependent on P such that P − Qi1 ∈ 2E(Q) or
P −Qi1 = 2P1, P1 ∈ E(Q).
Let’s go back to the first equation, P = Qi1 + 2P1. If we substitute

P1 into it, we get

P = Qi1 + 2Qi2 + 4P2,

and we can again replace P2 to get something else. Recursively, this
looks like

P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim + 2mPm

Set P = −Qi. Then by the second property, we get

h(P −Qi) ≤ 2h(P ) + κi,∀P ∈ E(Q).



20 AGNIV SARKAR

We can set up n equations for each coset Q1, Q2, . . . , Qn, which would
give us n different κ’s. So, let κ′ = max(κ1, κ2, . . . , κn). Then,

h(P −Qi) ≤ 2h(P ) + κ′, (∀P ∈ E(Q), 1 ≤ i ≤ n)

4h(Pj) ≤ h(2Pj) + κ

= h(Pj−1 −Qij) + κ

≤ 2h(Pj−1) + κ′ + κ

h(Pj) ≤
h(Pj−1)

2
+
κ′ + κ

4

=
3

4
h(Pj−1)−

1

4
(h(Pj−1)− (κ′ + κ))

≤ 3

4
h(Pj−1)

...

h(Pm) ≤ κ′ + κ

So, starting with h(Pj−1) ≥ κ′ + κ, as h(Pj) ≤ 3
4
h(Pi−1). As j gets

larger, h(Pj) trends to 0. As such, there must be an m such that
h(Pm) ≤ κ′ + κ. Remember that any point P can be written out as

P = Q1 + 2Q2 + 4Q3 + . . . 2n−1Qn + 2nPm.

Since h(Pm) ≤ κ′ + κ, there are a finite number of possible Pm. So,

{Q1, Q2, . . . , Qn} ∪ {Pm ∈ E(Q) : h(Pm) ≤ κ′ + κ}

finitely generate E(Q). We can finitely generate E(Q). □

4. Billing-Mahler Theorem

4.1. Torsion Points. This subsection will go over the (not necessarily
rational) points of finite order. A point P ∈ E : y2 = f(x) = x3 +
ax2+ bx+ c with finite order means that there exists a positive integer
m such that

mP = P + P + . . .+ P = O.
For the point to have order m, m has to be the smallest element such
that mP = O. For some elliptic curve over Q, we will denote the set
E[m] to be the set of m-torsion points, meaning

E[m] = {P ∈ E(Q)|mP = O}.

Let us focus on E[2]. What this means is for some point P ∈ E,
P + P = O. More simply put, a point P has order 2 if P = −P , so if
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P = (x, y), (x, y) = (x,−y). This means that the only points of order
two are the roots of E (the points where y = 0). So, we know that

E[2] = {O, P1, P2, P3}
where P1, P2, P3 are the (complex) roots of E. Because these points are
of order two, E[2] ∼= Z2 × Z2 (a direct product of two groups of order
two).

Let’s look at E[3] for more of a challenge. Last time we could write
P = −P to simplify finding the points that are not simply the point at
infinity. This time we will write a point P having order 3 as 2P = −P .
We can then write x(2P ) = x(−P ) = x(P ) where x(P ) is the x-
coordinate of P . In order to find the points that satisfy this, we can
use the algebraic expansion of the addition function. We can see that
P has order 3 if and only if

x(P ) = x =
x4 − 2bx2 − 8c+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x(2P ).

Let us simplify this with cross multiplication and subtraction. We
would get

4x4 + 4ax3 + 4bx2 + 4cx = x4 − 2bx2 − 8c+ b2 − 4ac

3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2 = 0.

Denote this function as ψ3(x). Then,

ψ3(x) = 2f(x)f ′′(x)− f(x)′2.

So, P is a point of order three if and only if it’s x coordinate is a
root of ψ3(x). We will prove that ψ3(x) has 4 distinct roots by showing
ψ3(x) and ψ

′
3(x) have different roots. This would mean that ψ3(x) is a

separable function, meaning that no roots repeat.
We can calculate ψ′

3(x) to be

ψ′
3(x) = 2f(x)f ′′′(x) = 12f(x).

If something is a root of ψ′
3(x), then it is a root of f(x). So, if something

is a common root between ψ3(x) and it’s derivative, it’s the root of both
f(x) and f ′(x). However, this is a contradiction to the definition of an
elliptic curve. They are nonsingular, meaning that they have different
roots. So, we know that ψ3(x) is a separable function with 4 distinct
roots.

We now know the points of order 3. Let x1, x2, x3, x4 be the roots of
ψ3(x), and let yi be

√
f(xi). Then,

E[3] = { O, (x1, y1), (x1,−y1), (x2, y2), (x2,−y2),
(x3, y3), (x3,−y3), (x4, y4), (x4,−y4)},
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where each element is distinct and of order 3 or 1. It is interesting
to note that these are the inflection points of E as well. The set E[3]
becomes an abelian group of order 9, meaning E[3] ∼= Z3 × Z3.

So, if we have a way to translate the statement mP = 0 into some-
thing else, we can write a ψm(x) function (called a division polynomial
within the literature) to find the x coordinates of the m-torsion points.
Also, it should hopefully look like E[m] ∼= Zm × Zm, which is true. A
further proof of this is within [5].

4.2. Setup. We can now start looking at the Billing-Mahler Theorem.

Theorem 2. (Billing-Mahler) An elliptic curve defined over Q does
not have a rational torsion point of order 11.

Proof. Let us quickly revisit the projective plane. Remember, if a triple
of points in the projective plane is thought of as a vector (X, Y, Z) in
R3, then the all of scalar multiples of that vector can be thought of
as the same as the original vector. The projective plane can then be
thought of as the set of all directions in R3.

Let E be an elliptic curve over Q as a subvariety of P2 (we will be
looking at points on E as they are on the projective plane). Assume
towards a contradiction that there exists a rational point P ∈ E[11].
Denote Pi to be iP , or P added to itself i times. This would mean that
if Pi = Pj, then i ≡ j (mod 11), and if Pi, Pj, and Pk are collinear,
then because that would mean Pi + Pj + Pk = O, we can see that
i+ j + k ≡ 0 (mod 11). It will be important to see that

Pi, Pj, Pk are collinear if and only if i+ j + k ≡ 0 (mod 11).

Let us introduce a lemma.

Lemma 5. LetK be a field and let (a, b, c), (α, β, γ) ∈ P2(K) be points
such that they are distinct. Then, there exists a unique line through
these points, given by the equation∣∣∣∣∣∣

x y z
a b c
α β γ

∣∣∣∣∣∣ = −γay + αβz + γbx− αbz − βcx+ αcy = 0.

Two lines given by equations ux+ vy+wz = 0 and u′x+ v′y+w′z = 0
coincide if and only if the points (u, v, w) and (u, v, w) coincide as points
in P2(K). Two distinct lines in P2(K) intersect at exactly one point.
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Proof. We can write out the statement in matrix form. Let (a, b, c) and
(α, β, γ) ∈ P2(K). Then, we want to find a unique solution to[

a b c
α β γ

]a1a2
a3

 =

[
0
0

]
.

Since these are two distinct points, the rows of the left matrix are
linearly independent, meaning there exists a unique solution to this
equation. This equation turns out to be the stated determinant of a
matrix. □

4.3. Remapping of Coordinates. So, what would the implications
of this point be? Consider the three points P0 = (0, 1, 0), P1 = (a, b, c),
and P2 = (α, β, γ). Because 0 + 1 + 2 are not equivalent to 0 mod 11,
we know that these do not lie on a line. The previous lemma would
also tell us that these are linearly independent, meaning that there is
a linear map ϕ that maps the points to

P ′
0 := (0, 1, 0), P ′

1 := (1, 0, 0), P ′
2 := (0, 0, 1).

This preserves lines and the torsion points, so P ′
1 has order 11 and these

points are still not collinear.
Now, let’s consider the point P ′

3 = (u, v, w). Again, P ′
3, P

′
0, and P

′
1

are all noncollinear. As P ′
0 and P ′

1 have z-coordinates 0, we can then
say w ̸= 0. So, we can define another mapping ρ that sends (x, y, z) to
(x
u
, y
v
, z
w
). This is a bijective mapping that doesn’t actually change the

points P ′
0, P

′
1, and P

′
2 due to the equivalence relation in the projective

plane. What this does allow us to do, is now write

P0 = (0, 1, 0), P1 = (1, 0, 0), P2 = (0, 0, 1), P3 = (1, 1, 1).

So, let us denote P4 = (x1, x2, x3).

Proposition 2. With the construction labeled before, P−3 = (1, 0, 1),
and

x21x2 − x21x3 + x1x
2
3 − x22x3 = 0

Proof. We can define the line between two distinct points using the
lemma outlined above. Let the line Li,j be the line between two distinct
points Pi and Pj. Also, if k+m+n ≡ k+ i+ j ≡ 0 (mod 11), then we
know that Pk is the intersection of Li,j and Lm,n. So, using the lemma,
we can get some lines:

L0,1 : z = 0

L0,2 : x = 0
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L0,3 : x− z = 0

L1,2 : y = 0

L1,4 : x3y − x2z = 0

L2,3 : x− y = 0

Using the previous observation about collinearity, we can see that
because −3 + 0 + 3 ≡ −3 + 1 + 2 ≡ 0 (mod 11), then the intersection
of L0,3 and L1,2 is P−3 = (1, 0, 1).

Because of this, L−3,4 : −x2x + (x1 − x3)y + x2z = 0. We can find
P−1 similarly to how we found P−3 and find that P−1 = (x1−x3, x2, 0).
Then,

L−1,3 : x2x− (x1 − x3)y + (x1 − x2 − x3)z = 0.

We can find P−2 = (0, x1 − x2 − x3, x1 − x3), and write

L−2,−3 = (x1 − x2 − x3)x+ (x1 − x3)y − (x1 − x2 − x3)z = 0.

Then we find P−5 = (x2, x2, x3), and write

L0,−5 : x3x− x2x = 0.

Then we can find

P5 = ((x1 − x3)x2,−x1x2 + x1x3 + x22 − x23, (x1 − x3)x3).

This would mean x1 ̸= x3 as otherwise P−2 = P0, a contradiction. So,
P5 ∈ P2(Q) with nonzero x and z coordinates.
Now, we can see that P2, P4, and P5 lie on a line. We can use the

lemma and take the determinant to show

x21x2 − x21x3 + x1x
2
3 − x22x3 = 0.

□

Now, we can set up a corollary.

Corollary 1. If there exists an elliptic curve defined over Q that has a
rational point of order 11, then the cubic curve C given by the equation:

u2v − u2w + uw2 − v2w = 0

has more than 5 rational points.

Proof. The curve would have rational points at P0, P1, P2, P3, P−3, and
if we assume the existence of the rational point of order eleven, then
P4 would be a sixth rational point on C. □

So, to disprove that there are any 11 torsion points, we have to show
this corollary as false.
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4.4. Curve C and Elliptic Curve E.

Proposition 3. The cubic C given by the equation

u2v − u2w + uw2 − v2w = 0

has exactly 5 rational points, which are (0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 1, 1),
and (1, 0, 1).

Proof. First, notice that C is an elliptic curve, although it is not in the
nicer form. We can use an algorithm from T. Nagel [6] that translates
C to a Weierstrass form (the form that we are using). This turns out
to mean that C is equivalent to E : y2 = x3 − 4x2 + 16. This becomes
instantly much easier to solve, as we now only have to show that there
are only 5 rational points on this curve.

We will have to use the Nagell-Lutz theorem, where a proof of which
is outlined in [7]. With this theorem, it becomes clear that E(Q)tors has
order 5, containing {O, (0, 4), (0,−4), (4, 4), (4,−4)}. Now, we have to
show that the rank of E(Q) is 0, or E(Q) ∼= Z/5Z · Z0. This is the
hardest bit of the proof, and it assumes some algebraic number theory
understanding.

The polynomial f(x) := x3−4x2+16 is irreducible with discriminant
−28 · 11. Let θ = θ1, θ2, θ3 be the roots of f , with θ as the real root.
Then, let the cubic number field K be K := Q(θ). The discriminant of
K is −44 = −22 ·11, and the ring of integers of K is OK = Z+Z · 1

2
θ+

Z · 1
4
θ2. This means that the unit rank of K is 1, and the fundamental

unit is η := 1− 1
2
θ. This makes the units of OK into O×

K = ⟨−1⟩ × ⟨η⟩.
The class number of K is then hK = 1.

With the homomorphism that is defined within the proof of Mordell’s
Theorem,

µ : E(Q) −→ K×/(K×)2,

we can look at its kernel, which is 2E(Q). Because of this and the fact
that

E(Q) ∼= Z/5Z× Zr, (r ≥ 0),

we can say
ℑ(µ) ∼= E(Q)/2E(Q) ∼= (Z/2Z)e,

meaning that we have to prove that µ has a trivial image instead.
What this means is that there is no rational point on E that is

trivial under µ. So, assume to the contrary that there is a rational
point (x, y) ∈ E(Q) such that x− θ is not a square in K.

Let’s use the fact that we can write

x =
n

e2
, y =

m

e3
,
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for integers n,m, e such that gcd(n, e) = gcd(m, e) = 1. Then, we get

µ(x, y) = (x− θ) (mod K×)2 = (n− e2θ) (mod K×)2.

So, n− e2θ ̸∈ (K×)2.
Now we consider the integral ideal (n − e2θ) of OK . Also following

from Mordell’s theorem,

n2 − e2θ =
(
Πip⅁i

i

)
· A2,

where A is some integral ideal, ⅁i ∈ {0, 1}, and pi are distinct prime
ideals of OK such that each pi divides the discriminant −28 ·11, meaning
that they divide either 2 or 11.

We want to show that all ⅁i are equal to 0. We need to note that
the prime decomposition of 2 and 11 in K are

(2) = p3, (11) = q2 · q′2 with q ̸= q′.
So then we have

NK/Q(p) = 2, NK/Q(q) = NK/Q(q′) = 11.

So, the previous product can be written out into

Πip⅁i
i = pa1qa2(q′)a3 ,

where a1, a2, a3 ∈ {0, 1} and

ΠiNK/Q(pi)⅁i = 2a1 · 11a2+a3 .

On the other hand,

ΠiNK/Q(pi)⅁i ·NK/Q(A)2 = NK/Q(n− e2θ)

= ((n− e2θ1)(n− e2θ2)(n− e2θ3))

= (e2(x− θ1)(x− θ2)(x− θ3))

= (e6y2)

= (m)2,

meaning that the original product is a square. This would mean that
⅁1 = 0 and ⅁2 = ⅁3.
If ⅁2 = 1, then, qq′|(n− e2θ), meaning

11|q2(q′)2|(n− e2θ)2 = n2 − 2ne2θ + e4θ2,

and the number
n2 − 2ne2θ + e4θ2

11
is the ring of integers OK = Z + Z · 1

2
θ + Z · 1

4
θ2. However, this is a

contradiction, as it would imply 11| gcd(n, e), when we have assumed
that they are coprime.
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So, a1 = a2 = a3 = 0. This means that n − e2θ = A2 for some
integral ideal A. Since K has class number 1, it follows that A = (α)
for some α ∈ OK . Then,

n− e2θ = u · a2,
where u is a unit that is non-square in K, because we have just shown
that n−e2θ is not a square in K. We can assume that u ∈ {−1, η,−η},
where η := 1− 1

2
θ, given that we choose an appropriate α. Now,

NK/Q(u) ·NK/Q = NK/Q(n− e2θ) = m2,

whereNK/Q(u) > 0 as the right-hand side is a square. Once we consider
that NK/Q(−1) = −1, NK/Q(η) = 1, implying that NK/Q(−η) = −1, we
are restricted to

n− e2θ = η · α2,

for some α ∈ OK .
Let β := ηα, and say that β = a+ b · 1

2
θ+ c · 1

4
θ, with a, b, c ∈ Z. We

find that a, b, c satisfy

η · (n− e2θ) = (1− 1

2
θ)(n− e2θ) = β2 = (a+ b · 1

2
θ + c · 1

4
θ2)2.

Using the fact that θ3 = 4θ2 − 16, θ4 = 4θ3 − 16θ = 16θ2 − 16θ − 64,
we see that the previous equation is equivalent to

n−
(
n
2
+ e2

)
θ + e2

2
θ = (a2 − 4c2 − 4bc) + (ab− c2)θ +

(
b2

4
+ ac

2
+ bc+ c2

)
θ2.

As these are two polynomials of θ with degree 2 it follows that their
coefficients must be equal. Specifically

n = a2 − 4c2 − 4bc

−n− 2e2 = 2ab− 2c2

2e2 = b2 + 2ac+ 4bc+ 4c2

The last equality implies that b is even, and the second one implies that
n is even, implying that a is even in the first one. Since 2| gcd(a, b),
the right-hand side of the final equation is divisible by 4. This directly
implies that e is an even number, contradicting the fact that n and e
are coprime.

This would mean that the map µ is a trivial map, implying that the
rank of E(Q) is of rank 1, so there are only 5 rational points on the
elliptic curve, E. This completes the proof of Proposition 3. □

Because Proposition 3 is true, we have now disproved Corollary 1.
This means that we have contradicted our original assumption that
there exists a rational 11 torsion point.

As such, no elliptic curve forms a group of rational 11-torsion points.
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□

5. Extensions of Elliptic Curves

Now the question before I end this paper is, what is the point? Why
are we interested in these equations?

There are many answers to this question. Just like how linear sys-
tems can represent stochastic models and how quadratic equations can
describe velocity, elliptic curve’s have their use. They are used in quan-
tum security, pairing based cryptography, Diffie-Hellman cryptography,
primality tests, factoring numbers, and a lot more. It is interesting to
see how it is used in cryptography.

5.1. Cryptography. ECC, or Elliptic Curve Cryptography, is an ex-
tremely powerful form of cryptography used today. RSA is the pre-
cursor to this. RSA relies on modular arithmetic to start with a given
number that represents a message, and raises it to a power and takes
the modulo consecutively. This is relatively secure, as if you choose
a large enough modulo, you can create an extremely hard factoring
problem. The recipient has the method to decipher it, however.

What ECC does is it instead uses the group law on the curve to
take the starting message and find a resulting end point. This is a lot
more secure than RSA, because elliptic curves on their own are much
harder to understand. The recipient of the message also can decipher
the original.

ECC is used within finite fields, modulo some large prime, similar to
RSA. The group law still holds within finite fields, so this makes sense,
and it creates the doubly hard problem of factoring and elliptic curves.
A simple explanation can be found here.

The reason torsion points are interesting is because of how ECC
determines what secret code to send. It takes the secret message, a,
and some original point P , and sends the message aP . If this goes to
the point at infinity, then we are out of luck, and there isn’t really a
way to decipher the message.

This is why we want to study torsion points, in order to better un-
derstand when a rational point (as computers cannot handle anything
else) goes to the point at infinity before we send the message.

I hope that gives a healthy synopsis on elliptic curves and at least
one of their uses.
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