Pell's Equation

Adanur Nas

July 8, 2022

Adanur Nas

æ

Pell's Equation

The Equation

$$x^2 - dy^2 = 1$$

Ac	lan	ur	Ν	as

2

2 / 21

イロト イヨト イヨト イヨト

$$x^2 - dy^2 = 1$$

1. d is a positive integer but not a perfect square

Δ	d.	h	ur	N	26
	u.		ui	1.4	a 5

2

2/21

 $x^2 - dy^2 = 1$

1. d is a positive integer but not a perfect square

2. x and y are integers

A	Р	5	n		r	- N	a	5	~
\sim	u	a		u			۷	a	2

æ

イロト イヨト イヨト -

 $x^2 - dy^2 = 1$

- 1. d is a positive integer but not a perfect square
- 2. x and y are integers
- 3. infinite number of solutions

æ

イロト イヨト イヨト -

 $x^2 - dy^2 = 1$

- 1. d is a positive integer but not a perfect square
- 2. x and y are integers
- 3. infinite number of solutions
- 4. a Diophantine equation

æ

イロト 不得 トイヨト イヨト

 $x^2 - dy^2 = 1$

- 1. d is a positive integer but not a perfect square
- 2. x and y are integers
- 3. infinite number of solutions
- 4. a Diophantine equation

Example

Let d be equal to 2. Thus,

$$3^2 - 2.2^2 = 1$$

Α				

< □ > < □ > < □ > < □ >

æ

The Equation

$$x^2 - dy^2 = n$$

A	Чэ	nu	r l	NI :	20
1.0	uu				

イロト イヨト イヨト イヨト

2

The Equation

$$x^2 - dy^2 = n$$

1. similar to the Pell's Equation except for its solution

Α	d-	'n	112	N	26
	ue		u	1.4	a 5

э

3/21

イロト イポト イヨト イヨト

The Equation

 $x^2 - dy^2 = n$

1. similar to the Pell's Equation except for its solution

2. *n* can be any integer except 1

А	d	а	n	u	r	ſ	J	а	5

æ

イロト イヨト イヨト -

The Equation

 $x^2 - dy^2 = n$

- 1. similar to the Pell's Equation except for its solution
- 2. *n* can be any integer except 1
- 3. uses Pell's Equation to provide solutions

э

イロト 不得 トイヨト イヨト

 $x^2 - dy^2 = n$

- 1. similar to the Pell's Equation except for its solution
- 2. *n* can be any integer except 1
- 3. uses Pell's Equation to provide solutions

Example

Let d be equal to 6. Thus,

$$3^2 - 6.1^2 = 3$$

Adanur Na	s
-----------	---

3/21

< □ > < □ > < □ > < □ > < □ > < □ >

Fundamental Solution

Definition

Fundamental solution refers to any solution which can solve one or more *root causes*. That is, the root of the problem is used to construct theorems and problems based on them.

Fundamental solution refers to any solution which can solve one or more *root causes*. That is, the root of the problem is used to construct theorems and problems based on them.

1. highly important to solve the *Pell's Equation* since every solution method is based on it

4 / 21

Fundamental solution refers to any solution which can solve one or more *root causes*. That is, the root of the problem is used to construct theorems and problems based on them.

1. highly important to solve the *Pell's Equation* since every solution method is based on it

Example

Let d be equal to 3. Thus,

$$x^2 - 3y^2 = 1$$

$$x^2 = 3y^2 + 1$$

The smallest solution that satisfies is (2,1); thus, it is the *fundamental* solution of this equation.

Continued Fraction is any fraction whose numerator is an integer and denominator is a quantity plus a fraction, and the fraction's numerator and denominator follow a similar pattern.

А	d	а	n	u	r	ſ	J	а	5

Continued Fraction is any fraction whose numerator is an integer and denominator is a quantity plus a fraction, and the fraction's numerator and denominator follow a similar pattern.

1. highly important to understand various different topics in math, including but not limited to *Pell's Equation*

Continued Fraction is any fraction whose numerator is an integer and denominator is a quantity plus a fraction, and the fraction's numerator and denominator follow a similar pattern.

 highly important to understand various different topics in math, including but not limited to *Pell's Equation* has many types, such as *Finite Continued Fraction* or *Generalized Continued Fraction*

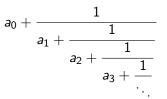
Continued Fraction is any fraction whose numerator is an integer and denominator is a quantity plus a fraction, and the fraction's numerator and denominator follow a similar pattern.

 highly important to understand various different topics in math, including but not limited to *Pell's Equation* has many types, such as *Finite Continued Fraction* or *Generalized Continued Fraction* hest way to solve *Pell's Equation* and get best approximations for

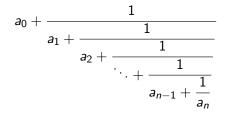
3. best way to solve *Pell's Equation* and get best approximations for irrational numbers.

Representation of Continued Fractions

Representing *Continued Fractions* is indeed a fun but mind-blowing process. Well, because there are a lot of different ways to do it!



or



There are abbreviated notation representations as well!

 $[a_0; a_1, a_2, a_3, \ldots]$

or

$$[a_0; a_1, a_2, \ldots, a_{n-1}, a_n]$$

And, a site note is that it all depends on whether represent a rational number or irrational number. That is, whether they are *Finite Continued Fraction* or *Infinite Continued Fraction*.

Solutions to Continued Fraction

Continued Fractions can be solved through many different methods. But, one of them is particularly easy and fun to do.

3

イロト イヨト イヨト -

Solutions to Continued Fraction

Continued Fractions can be solved through many different methods. But, one of them is particularly easy and fun to do.

The Continued Fraction of $\frac{149}{17}$ is

	٠	日本・「日本・「日本・「日本」	୬୯୯
Adanur Nas	Pell's Equation	July 8, 2022	8 / 21

The Continued Fraction of $\frac{149}{17}$ is $149 = \boxed{8}.17 + 13$

	•		
Adanur Nas	Pell's Equation	July 8, 2022	8 / 21

The Continued Fraction of $\frac{149}{17}$ is $149 = \boxed{8}.17 + 13$ $17 = \boxed{1}.13 + 4$

		・ロト ・四ト ・ヨト ・ヨト ・ヨ	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Adanur Nas	Pell's Equation	July 8, 2022	8 / 21

The Continued Fraction of $\frac{149}{17}$ is 149 = 8.17 + 13 17 = 1.13 + 413 = 3.4 + 1

	4		æ	୬୯୯
Adanur Nas	Pell's Equation	July 8, 2022		8 / 21

The Continued Fraction of $\frac{149}{17}$ is 149 = 8.17 + 1317 = 1.13 + 413 = 3.4 + 14 = 4 . 1 + 0イロン 不聞 とくほとう ほとう 3

Adanur Nas

July 8, 2022

Continued Fractions are a mystery itself since they can give various different representations to π .

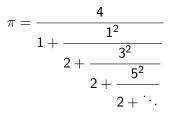
Α				

э

9/21

イロト 不得 トイヨト イヨト

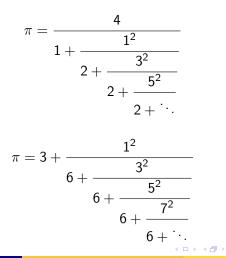
Continued Fractions are a mystery itself since they can give various different representations to π .



or

Image: A matrix and a matrix

Continued Fractions are a mystery itself since they can give various different representations to π .

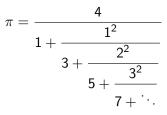


Adanur Nas

or

July 8, 2022

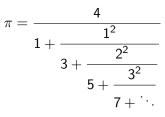
or, even



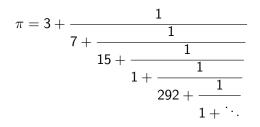
or, again, even

	٩	ロ・・雪・・雪・・目・	≣ • ગ < ભ
Adanur Nas	Pell's Equation	July 8, 2022	10 / 21

or, even



or, again, even



★ ∃ >

æ

Image: A mathematical states and a mathem

Definition

Maybe the most important asset to solve the *Pell's Equation, convergents* derive from *Continued Fractions*. And, they are what we get when we truncate a continued fraction after some number of terms. In *Continued Fraction, convergents* are the best approximation of that number.

А	d	а	n	u	r	ſ	J	а	5

(日) (四) (日) (日) (日)

Definition

Maybe the most important asset to solve the *Pell's Equation, convergents* derive from *Continued Fractions*. And, they are what we get when we truncate a continued fraction after some number of terms. In *Continued Fraction, convergents* are the best approximation of that number.

1. actively used to find the *fundamental solution* and other solutions to *Pell's Equation*, especially when trial-and-error does not work.

< □ > < □ > < □ > < □ >

Definition

Maybe the most important asset to solve the *Pell's Equation, convergents* derive from *Continued Fractions*. And, they are what we get when we truncate a continued fraction after some number of terms. In *Continued Fraction, convergents* are the best approximation of that number.

1. actively used to find the *fundamental solution* and other solutions to *Pell's Equation*, especially when trial-and-error does not work.

Why?

Imagine you are trying to find the *fundamental solution* to the *Pell's Equation* in which d equals to 109. Well, then, you need to try until when x equals to 158070671986249 and y equals to 15140424455100.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

The convergents of

$$\frac{93}{17} = 5 + \frac{1}{2 + \frac{1}{8}}$$

are [5], [5;2], and [5;2,8]

Α	d-	n.	112	N	26
	ue		u	1.4	<u>a</u> 5

2

Convergents

Example

The convergents of

$$\frac{93}{17} = 5 + \frac{1}{2 + \frac{1}{8}}$$

are [5], [5;2], and [5;2,8]

However, even the *convergents* are as interesting as the *Continued Fractions* themselves. That is, you can find the *convergents* of $\sqrt{2}$ through the method

 $\frac{numerator + (2.denominator)}{numerator + denominator}$

Theorem 4.1

By changing the value of y, then basing the value of x on it, we can find the *fundamental solutions* to the most basic *Pell's Equations*.

A	d	a	n	u	r	1	٩	а	2

Image: A matrix and A matrix

Theorem 4.1

By changing the value of y, then basing the value of x on it, we can find the *fundamental solutions* to the most basic *Pell's Equations*.

Suppose d is a positive small integer such as 2, then we can solve it easily through trial-and-error method.

A	d	a	n	u	r	Ν	J	а	2

Image: A matrix and a matrix

Theorem 4.1

By changing the value of y, then basing the value of x on it, we can find the *fundamental solutions* to the most basic *Pell's Equations*.

Suppose d is a positive small integer such as 2, then we can solve it easily through trial-and-error method.

$$x^{2} - (2.1^{2}) = 1$$
$$x^{2} - 2 = 1$$
$$x^{2} = 2 + 1 = 3$$
$$x = \sqrt{3}$$

Theorem 4.1

By changing the value of y, then basing the value of x on it, we can find the *fundamental solutions* to the most basic *Pell's Equations*.

Suppose d is a positive small integer such as 2, then we can solve it easily through trial-and-error method.

$$x^{2} - (2.1^{2}) = 1$$

$$x^{2} - 2 = 1$$

$$x^{2} - 2 = 1$$

$$x^{2} - 8 = 1$$

$$x^{2} = 2 + 1 = 3$$

$$x = \sqrt{3}$$

$$x = 3$$

Theorem 4.2

The *fundamental solution* of a *Pell's Equation* can be found by finding and and testing each consecutive *convergents* of \sqrt{d} until a solution is found.

Ac	lar	nur	N	as

Theorem 4.2

The *fundamental solution* of a *Pell's Equation* can be found by finding and and testing each consecutive *convergents* of \sqrt{d} until a solution is found.

Suppose *d* is a greater number than 2, such as 6. Before, let's identify the *convergents* of $\sqrt{6}$.

A	d	aı	nι	ır	N	las	

Theorem 4.2

The *fundamental solution* of a *Pell's Equation* can be found by finding and and testing each consecutive *convergents* of \sqrt{d} until a solution is found.

Suppose *d* is a greater number than 2, such as 6. Before, let's identify the *convergents* of $\sqrt{6}$.

$$\frac{2}{1}, \frac{5}{2}, \frac{22}{9}, \frac{49}{20}$$

Theorem 4.2

The *fundamental solution* of a *Pell's Equation* can be found by finding and and testing each consecutive *convergents* of \sqrt{d} until a solution is found.

Suppose *d* is a greater number than 2, such as 6. Before, let's identify the *convergents* of $\sqrt{6}$.

$$\frac{2}{1}, \frac{5}{2}, \frac{22}{9}, \frac{49}{20}$$

$$2^2 - 6.1^2 = -2$$

	< 1		- 99 C
Adanur Nas	Pell's Equation	July 8, 2022	14 / 21

Theorem 4.2

The *fundamental solution* of a *Pell's Equation* can be found by finding and and testing each consecutive *convergents* of \sqrt{d} until a solution is found.

Suppose *d* is a greater number than 2, such as 6. Before, let's identify the *convergents* of $\sqrt{6}$.

2	5	22	49
$\overline{1}^{\prime}$	$\overline{2}^{,}$	<u> </u>	20

Proof

$$2^2 - 6.1^2 = -2$$

	4.1		1 = 1	1 = 1	-	\$) Q (\$
Adanur Nas	Pell's Equation		July 8,	2022		14 / 21

 $5^2 - 62^2 = 1$

Theorem 4.3

By finding the convergents of \sqrt{d} through Continued Fractions and applying the convergents to *Pell's Equation*, other solutions to the Pell's Equation can also be found.

Theorem 4.3

By finding the convergents of \sqrt{d} through Continued Fractions and applying the convergents to *Pell's Equation*, other solutions to the Pell's Equation can also be found.

Since we already know the first *convergents* of $\sqrt{6}$, suppose *d* is equal to 6.

Theorem 4.3

By finding the convergents of \sqrt{d} through Continued Fractions and applying the convergents to *Pell's Equation*, other solutions to the Pell's Equation can also be found.

Since we already know the first *convergents* of $\sqrt{6}$, suppose *d* is equal to 6.

$$\frac{2}{1}, \frac{5}{2}, \frac{22}{9}, \frac{49}{20}$$

Theorem 4.3

By finding the convergents of \sqrt{d} through Continued Fractions and applying the convergents to *Pell's Equation*, other solutions to the Pell's Equation can also be found.

Since we already know the first *convergents* of $\sqrt{6}$, suppose *d* is equal to 6.

$$\frac{2}{1}, \frac{5}{2}, \frac{22}{9}, \frac{49}{20}$$

$$22^2 - 6.9^2 = -2$$

Theorem 4.3

By finding the convergents of \sqrt{d} through Continued Fractions and applying the convergents to *Pell's Equation*, other solutions to the Pell's Equation can also be found.

Since we already know the first *convergents* of $\sqrt{6}$, suppose *d* is equal to 6.

$$\frac{2}{1}, \frac{5}{2}, \frac{22}{9}, \frac{49}{20}$$

$$22^2 - 6.9^2 = -2$$

$$49^2 - 6.20^2 = 1$$

Theorem 4.4

By using the equation $(x + y\sqrt{d})^n = \alpha^n$, raising n to different powers, and then applying the fundamental solution, we can find the other solutions to Pell's Equation.

Theorem 4.4

By using the equation $(x + y\sqrt{d})^n = \alpha^n$, raising n to different powers, and then applying the fundamental solution, we can find the other solutions to Pell's Equation.

Since it is the smallest value that d can get, suppose d is equal to 2.

Theorem 4.4

By using the equation $(x + y\sqrt{d})^n = \alpha^n$, raising n to different powers, and then applying the fundamental solution, we can find the other solutions to Pell's Equation.

Since it is the smallest value that d can get, suppose d is equal to 2. Proof

$$x^2 - 2y^2 = 1$$

		ロ・・部・・ド・・	€.	୬୯୯
Adanur Nas	Pell's Equation	July 8, 2022		16 / 21

Theorem 4.4

By using the equation $(x + y\sqrt{d})^n = \alpha^n$, raising n to different powers, and then applying the fundamental solution, we can find the other solutions to Pell's Equation.

Since it is the smallest value that d can get, suppose d is equal to 2. Proof

$$x^2 - 2y^2 = 1$$

$$x + \sqrt{2}y = \alpha$$

	•	日本 本國家 本語家 本語家	æ	596
Adanur Nas	Pell's Equation	July 8, 2022		16 / 21

Theorem 4.4

By using the equation $(x + y\sqrt{d})^n = \alpha^n$, raising n to different powers, and then applying the fundamental solution, we can find the other solutions to Pell's Equation.

Since it is the smallest value that d can get, suppose d is equal to 2. Proof

$$x^2 - 2y^2 = 1$$

$$x + \sqrt{2}y = \alpha$$

$$(x+\sqrt{2}y)^n = \alpha^n$$

Adanur Nas	A	١da	nu	r N	as
------------	---	-----	----	-----	----

イロン イヨン イヨン

16/21

3

$$(3+2\sqrt{2})^n = \alpha^n$$

	٩	日本人間を人間を人間を一個	E 996
Adanur Nas	Pell's Equation	July 8, 2022	17 / 21

$$(3+2\sqrt{2})^n = \alpha^n$$

$$(3+2\sqrt{2})^2 = \alpha^2$$

	•	ロ > 《圖 > 《 문 > 《 문 >	E Sac
Adanur Nas	Pell's Equation	July 8, 2022	17 / 21

Proof

$$(3+2\sqrt{2})^n = \alpha^n$$

$$(3+2\sqrt{2})^2 = \alpha^2$$

$$9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} = \alpha$$

A	١d	aı	nι	١r	Ν	las

3

17 / 21

イロト イヨト イヨト イヨト

Proof

$$(3+2\sqrt{2})^n = \alpha^n$$

 α

$$(3 + 2\sqrt{2})^2 = \alpha^2$$
$$9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} =$$

$$17^2 - 2.12^2 = 1$$

Ad	an	ur	N	las

3

・ロト ・四ト ・ヨト ・ヨト

Proof

$$(3+2\sqrt{2})^n = \alpha^n$$

$$(3 + 2\sqrt{2})^2 = \alpha^2 \qquad (3 + 2\sqrt{2})^3 = \alpha^3$$
$$9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} = \alpha$$
$$17^2 - 2.12^2 = 1$$

A					

3

17 / 21

Proof

$$(3+2\sqrt{2})^n = \alpha^n$$

$$(3 + 2\sqrt{2})^2 = \alpha^2 \qquad (3 + 2\sqrt{2})^3 = \alpha^3$$
$$9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} = \alpha \qquad 27 + 54\sqrt{2} + 72 + 16\sqrt{2} = 99 + 70\sqrt{2}$$
$$17^2 - 2.12^2 = 1$$

A					

3

・ロト ・四ト ・ヨト ・ヨト

Proof

$$(3+2\sqrt{2})^n = \alpha^n$$

$$(3 + 2\sqrt{2})^2 = \alpha^2 \qquad (3 + 2\sqrt{2})^3 = \alpha^3$$
$$9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} = \alpha \qquad 27 + 54\sqrt{2} + 72 + 16\sqrt{2} = 99 + 70\sqrt{2}$$
$$17^2 - 2.12^2 = 1 \qquad 99^2 - 2.70^2 = 1$$

_Δ	d	٥n	i i i i	- N	Vas
	(Gr		u		•uuu

July 8, 2022

・ロト ・四ト ・ヨト ・ヨト

3

Theorem 4.5

To find the other solutions to Generalized Pell's Equation, we first need to find its fundamental solution. Then, we need to make n=1 and find that equation's fundamental solution. Then, we need to apply their fundamental solutions to the equation $(x + y\sqrt{d})^n = \alpha^n$ and raise their powers. Lastly, we need to multiply both of them.

Theorem 4.5

To find the other solutions to Generalized Pell's Equation, we first need to find its fundamental solution. Then, we need to make n=1 and find that equation's fundamental solution. Then, we need to apply their fundamental solutions to the equation $(x + y\sqrt{d})^n = \alpha^n$ and raise their powers. Lastly, we need to multiply both of them.

Suppose d equals to 6 and n equals to 3.

Theorem 4.5

To find the other solutions to Generalized Pell's Equation, we first need to find its fundamental solution. Then, we need to make n=1 and find that equation's fundamental solution. Then, we need to apply their fundamental solutions to the equation $(x + y\sqrt{d})^n = \alpha^n$ and raise their powers. Lastly, we need to multiply both of them.

Suppose d equals to 6 and n equals to 3.

Proof

$$x^2 - 6y^2 = 3$$

$$x^2 = 6y^2 + 3$$

 $x^2 = 6.1^2 + 3 = 9$

July 8, 2022

Theorem 4.5

To find the other solutions to Generalized Pell's Equation, we first need to find its fundamental solution. Then, we need to make n=1 and find that equation's fundamental solution. Then, we need to apply their fundamental solutions to the equation $(x + y\sqrt{d})^n = \alpha^n$ and raise their powers. Lastly, we need to multiply both of them.

Suppose d equals to 6 and n equals to 3.

Proof

$$x^2 - 6y^2 = 3$$

$$x^2 = 6y^2 + 3$$
$$x^2 = 61^2 + 3 = 9$$

x = 3

July 8, 2022

Proof

Thus, the fundamental solution to our Generalized Pell's Equation is (3,1).

	4		≡
Adanur Nas	Pell's Equation	July 8, 2022	19 / 21

Proof

Thus, the *fundamental solution* to our *Generalized Pell's Equation* is (3,1). Now, we will make the equation equal to 1.

$$x^2 - 6y^2 = 1$$

Adanur Nas	Pell's Equation	L	July 8, 2022	19 / 21

(日)

Proof

Thus, the fundamental solution to our Generalized Pell's Equation is (3,1). Now, we will make the equation equal to 1.

$$x^2 - 6y^2 = 1$$

We already know the *fundamental solution* to $x^2 - 6y^2 = 1$ which is (5,2). Thus,

	∢ [► < E >	< ≣ >	1	500
Adanur Nas	Pell's Equation	July 8,	2022		19 / 21

Proof

Thus, the fundamental solution to our Generalized Pell's Equation is (3,1). Now, we will make the equation equal to 1.

$$x^2 - 6y^2 = 1$$

We already know the *fundamental solution* to $x^2 - 6y^2 = 1$ which is (5,2). Thus,

$$3 + 1\sqrt{6} = \alpha$$
$$5 + 2\sqrt{6} = \beta$$

	4		E 990
Adanur Nas	Pell's Equation	July 8, 2022	19 / 21

$$\alpha.\beta = (3 + 1\sqrt{6}).(5 + 2\sqrt{6})$$

	4	日本《國家《國家《國家》	≡
Adanur Nas	Pell's Equation	July 8, 2022	20 / 21

Proof

$$\alpha.\beta = (3 + 1\sqrt{6}).(5 + 2\sqrt{6})$$
$$\alpha.\beta = 15 + 5\sqrt{6} + 6\sqrt{6} + 12 = 27 + 11\sqrt{6}$$

		ロマネロマネート
Adanur Nas	Pell's Equation	July 8, 2022

э

20 / 21

Proof

$$\alpha.\beta=(3+1\sqrt{6}).(5+2\sqrt{6})$$

$$\alpha.\beta=15+5\sqrt{6}+6\sqrt{6}+12=27+11\sqrt{6}$$
 Now, we have (27,11). Thus,

Α	١da	an	ur	Ν	as

æ

イロト 不得 トイヨト イヨト

Proof

$$\alpha.\beta = (3+1\sqrt{6}).(5+2\sqrt{6})$$

$$\alpha.\beta = 15+5\sqrt{6}+6\sqrt{6}+12 = 27+11\sqrt{6}$$
 Now, we have (27,11). Thus,

$$27^2 - 6.11^2 = 3$$

Ad	lan	ur	N	as

イロト イポト イヨト イヨト

æ

Thank you for your attention!

A	dai	nu	r١	Vas

3