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Abstract. In this paper, we introduced and detailed the Pell’s Equation and its types.
Moreover, in order to provide solutions to Pell’s Equation, we also introduced and detailed
Continued Fraction and its types. Since there are not enough accessible papers on both top-
ics, we aimed to provide articulable solutions and explanations to Pell’s Equation. Therefore,
in this paper, the readers will find the answers to restrictions on both Pell’s Equation and
Continued Fraction, and they will be introduced to distinctive solutions to different Pell’s
Equation.

1. Introduction

Pell’s Equation has been one of the most important and interesting equations in the
Number Theory. Its history is as interesting as the equation itself. Although it is believed
that Pell’s Equation was first studied by John Pell in the seventeenth century, the history of
Pell’s Equation dates back to times of Indian mathematician Brahmagupta and Greek math-
ematician Pythagoras [4]. Later, William Brouncker became the first European to solve the
equation, and Leonhard Euler mistakenly attributed William Brouncker’s solution to John
Pell, which explains why the equation is named after John Pell [4].

Pell’s Equation has other forms, Generalized Pell’s Equation and Negative Pell’s Equation.
Although the Generalized Pell’s Equation is not used as commonly as the Pell’s Equation,
we still provided definition, solutions, and explanations for it. However, the Negative Pell’s
Equation is still subject to various different research and experiments. Thus, finding absolute
information on it is still relatively hard. Owing to this, we did not talk about Negative Pell’s
Equation in this paper.

Pell’s Equation can be solved through many different ways, such as through convergents
and fundamental solution via Continued Fractions or even through Quantum Algorithms.
We can solve it by using trial-and-error method, or we can benefit from different theorems.
In this paper, we mostly focused on solving it through convergents, fundamental solutions,
and Continued Fractions.

Continued Fraction is highly essential for mathematicians and understanding the myster-
ies behind some special irrational numbers such as π, e, or ϕ. Furthermore, if we need to
make calculations with the help of other irrational numbers such as

√
2, we take advantage

of Continued Fractions without even realizing.

Since we were aware of the fact that we needed to introduce the Pell’s Equation, its other
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types, and its different solutions, we gave detailed and articulable explanations and defini-
tions.

Moreover, understanding the basics of the Continued Fraction is quite crucial to grasp-
ing the concept of the Pell’s Equation. Due to this, we provided more than the basics of
Continued Fraction. Thus, the section Continued Fraction can be used for other purposes,
such as finding the best approximations to certain values, separately from understanding
and solving the Pell’s Equation.

In this paper, all the solutions and explanations were solved by us and calculators, and
they were explained, defined and written by us. The accuracy of the solutions and expla-
nations were checked through OEIS, research papers from distinguished researchers, and
calculators.

2. Pell’s Equation

2.1. Pell’s Equation. Pell’s Equation is a Diophantine equation. Pell’s Equation are any
equations where x and y are integers, and d is a positive integer but not a perfect square.
That is,

x2 − dy2 = 1

The equation is extremely important in Number Theory since it comes with investigation
and solution of numbers that are figurate in more than one way [6]. Pell’s Equation can give
infinite number of solutions.

Definition 2.1. Diophantine equations are polynomial equations involving only sums, pow-
ers, and products. All the constants are integers, and the only solutions of interest are
integers. That is,

x2 − y2 = z2

where x, y, and z are integers.

Proposition 2.2. The reason why d cannot be a perfect square is that when d becomes a
perfect square, we can only get one fundamental solution that is (±1, 0) for any positive
integer d.

Proof. Let d be 4, a perfect square. Then, we have

x2 − 4y2 = 1

x2 − (2y)2 = 1

The only perfect squares that are 1 apart are |1| and 0. Thus, the only solution is (±1, 0).
■

Proposition 2.3. The reason why d cannot be a negative integer is that when d becomes a
negative integer, we cannot get infinite number of solutions.

Proof. Let d be -1, a negative integer. Then, we have

x2 − (−1y2) = 1

x2 + y2 = 1

Thus, the only solutions to this equation are (±1, 0) and (0,±1).
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■

Proof. Let d be any negative integer that is smaller than -1. Thus, we will let d be -2. Then,
we have

x2 − (−2y2) = 1

x2 + 2y2 = 1

Thus, the only solution to this equation is (±1, 0). That is, y cannot be greater or smaller
than 0 because if it becomes any integer other than 0, then both x2 and −dy2 will become
greater than 1, which cannot happen.

■

Definition 2.4. Fundamental solution refers to any solution which can solve one or more
root causes. Thus, the root of the problem is used to construct theorems and problems based
on them. That is, the fundamental solution of an equation is the smallest solution to that
equation.

2.2. Generalized Pell’s Equation. Generalized Pell’s Equation is the equation where x
and y are integers and d is any positive integer which is not a perfect square, and the solution
is any integer except 1. That is,

x2 − dy2 = n

Generalized Pell’s Equation uses its fundamental solution and its Pell’s Equation form’s
fundamental solution to provide other solutions. We will talk about this in more detail later
in this paper.

3. Continued Fraction

3.1. Continued Fraction. Continued Fraction is any fraction whose numerator is an inte-
ger and denominator is a quantity plus a fraction, and the fraction’s numerator and denom-
inator follow a similar pattern. That is,

a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

or

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an
depending on whether they are Finite Continued Fraction or Infinite Continued Fraction.

Moreover, they can be represented in abbreviated notation as

[a0; a1, a2, a3, . . .]

or
[a0; a1, a2, . . . , an−1, an]
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depending on whether they are Finite Continued Fraction or Infinite Continued Fraction.
We will discuss about them later in this paper.

a0 is called the integer part, whereas other values are called partial numerator and par-
tial denominator. Any R can be represented by a continued fraction. We will prove this in
this paper later in the subsections Finite Continued Fraction and Infinite Continued Fraction.

In most of the cases, when mathematicians use the Continued Fraction term, they use
it to refer to Regular Continued Fraction. Thus, in this paper, when we use the Continued
Fraction term, we will use it to refer to Regular Continued Fraction which we will talk in
more detail later in this paper.

Definition 3.1. Convergent is what we get when we truncate a continued fraction after
some number of terms. In Continued Fraction, convergent is the best approximation of that
number. In other words, let [a0; a1, a2] be Continued Fractions of a R. Then, [a0], [a0; a1],
and [a0; a1, a2] will be the convergents of that number. Respectively, they are denoted as
[C0;C1, C2].

For example, the convergents of
93

17
= 5 +

1

2 +
1

8
are [5], [5;2], and [5;2,8].

Moreover,
√
2 can be easily calculated by using the formula

numerator + (2.denominator)

numerator + denominator

Proof. The first 4 convergents of
√
2 are

1

1
,
3

2
,
7

5
,
17

12

To find the convergents of
√
2 through this formula, first, we need to find the place of√

2 on the numerical axis.
√
2 is greater than 1 and smaller than 2. Thus, its Continued

Fraction expression is
√
2 = 1 +

1
. . .

Due to this, the first convergent is (1,1). Since now we have the first convergent, we will
start applying the formula.

1 + (2.1)

1 + 1
=

3

2
Now we have the second convergent (3,2), we will continue applying the formula.

3 + (2.2]

3 + 2
=

7

5

We will apply the formula once more with the third convergent (7,5).

7 + (2.5)

7 + 5
=

17

12
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The fourth convergent is (17,12). Moreover, these solutions prove that this formula can be
used to find the convergents of

√
2.

■

3.2. Finite Continued Fraction. Continued Fraction can either terminate at some point
or go up endlessly. If the former happens, it will be called as Finite Continued Fraction.
Where n > 0, it can be represented as either

c0 = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an
or

[a0; a1, a2, . . . , an−1, an]

Example 3.2. The Continued Fraction of
149

17
is

149 = 8 .17 + 13

17 = 1 .13 + 4

13 = 3 .4 + 1

4 = 4 .1 + 0

Thus, it is
149

17
= 8 +

1

1 +
1

3 +
1

4
or

[8; 1, 3, 4]

Proposition 3.3. If the first coefficient is an integer, and other coefficients are positive
integers, then every rational number can be represented as a Finite Continued Fraction, and
every Finite Continued Fraction represents a rational number.

Example 3.4. The Continued Fraction of
119

18
is

119

18
= 6 +

1

1 +
1

1 +
1

1 +
1

1 +
1

3
or

[6; 1, 1, 1, 1, 3]
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Example 3.5. The rational representation of 2 +
1

1 +
1

13

is

1

13
+

13

13
=

14

13

1
14

13

=
13

14

28

14
+

13

14
=

41

14

3.3. Infinite Continued Fraction. In the Finite Continued Fraction subsection, we men-
tioned about the way that the Continued Fractions either terminate at some point or go
up endlessly. We already talked about the former one representing the Finite Continued
Fractions. Thus, we will talk about the latter one, Infinite Continued Fractions, now.

Infinite Continued Fraction is the type of Continued Fraction where the fraction never stops.
Where n > 0, it can be represented as either

c0 = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1
. . .

or

[a0; a1, a2, a3, a4, . . .]

Example 3.6. The Continued Fraction of ϕ (Golden Ratio) is [3]

1 +
√
5

2
= 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1
. . .

or

[1; 1, 1, 1, 1, . . .]

Proposition 3.7. If the first coefficient is an integer, and other coefficients are positive
integers, every irrational number can be represented as an Infinite Continued Fraction, and
every Infinite Continued Fraction represents an irrational number.
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Example 3.8. One of the Continued Fractions of π is

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1 +
1

1 +
1

2 +
1

1 +
1

3 +
1

1 +
. . .

Example 3.9. The irrational representation of 1+
1

2 +
1

2 +
1

2 +
1

2 +
1

2 +
. . .

is
√
2. Because

√
2 = 1 + (

√
2− 1)

√
2− 1

1
.

√
2 + 1√
2 + 1

=
2− 1√
2 + 1

=
1

1 +
√
2

1 + (
√
2− 1) = 1 +

1

1 +
√
2

√
2 = 1 + (

√
2− 1) = 1 +

1

1 + (1 +
1

1 +
√
2
)

1 +
1

1 + (1 +
1

1 +
√
2
)
= 1 +

1

2 +
1

1 +
√
2

1 +
1

2 +
1

1 +
√
2

= 1 +
1

2 +
1

1 + (1 +
1

1 +
√
2
)

= 1 +
1

2 +
1

2 +
1

1 +
√
2

3.4. Regular Continued Fraction. Mostly being referred to as just the Continued Frac-
tion, Regular Continued Fraction is where the partial numerators are equal to 1. That is,
bn = 1 for all n = 1, 2, . . . It is an expression of the

a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .
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or

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an
and

[a0; a1, a2, a3, . . .]

or

[a0; a1, a2, . . . , an−1, an]

Example 3.10. Let a0 be
53

7
, a rational number. Then, we will have

53

7
= 7 +

1

1 +
1

1 +
1

3
or

[7; 1, 1, 3]

Example 3.11. Let a0 be e, an irrational number. Then, we will have

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
. . .

or

[2; 1, 2, 1, 1, 4, 1, 1, . . .]

Regular Continued Fraction is accepted as one of the best methods to find near commen-
surability. Commensurability means having a common ground generally. In mathematics,
commensurability is found when the ratio of two non-zero R is a rational number. Sometimes,
finding commensurability by using Regular Continued Fractions is called as Commensurable
Continued Fractions.

Example 3.12. The Metonic Cycle used by Greeks to use to calculate time and date had 235
Lunar months that were nearly equal to 19 Solar years [2]. When we use Regular Continued
Fraction, we will get

235

19
= 12

1

2 +
1

1 +
1

2 +
1

2
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and

[12; 2, 1, 2, 2]

The result we get is the sixth convergent of the ratio of the lunar phase(synodic) period and
solar period.

Note 3.13. However, while reading the Regular Continued Fraction, we need to bear in
the mind that mathematicians prefer different ways to notate the Regular Continued Frac-
tion. Some of them use comma, instead of semicolon to write in abbreviated notation form,
[a0, a1, a2, . . .] instead of [a0; a1, a2, . . .] Moreover, some of them notate as [b0; b1, b2, . . .] in-
stead of [a0; a1, a2, . . .] Lastly, some of them notate by skipping the a0, [a1; a2, a3, . . .] instead
of [a0; a1, a2, . . .] For the sake of this paper, we will use

[a0; a1, a2, . . .]

or

[a0; a1, a2, . . . , an]

3.5. Generalized Continued Fraction. Generalized Continued Fraction is the general-
ization of Regular Continued Fraction. It is an expression of the form

a0 +
b1

a1 +
b2

a2 +
b3

a3 +
b4
. . .

where the partial numerators (b1, b2, . . . ) and partial denominators (a0, a1, . . . ) can be
complex numbers, integers, functions, or real numbers. That is, they are arbitrary values.
Moreover, Generalized Continued Fraction has different forms such as

x = b0 +
b1
a1

+
b2
a2

+ · · ·

Generalized Continued Fraction is pretty useful to calculate irrational numbers, especially
π, and thus provides couple of different generalizations of Continued Fraction of π. We will
now introduce the 3 best-known Generalized Continued Fractions of π:

1. The Leibniz Formula for the Generalized Continued Fraction of π [7]:

π =
4

1 +
12

2 +
32

2 +
52

2 +
. . .
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2. The Nilakantha Somayaji’s Formula for the Generalized Continued Fraction of π [1]:

π = 3 +
12

6 +
32

6 +
52

6 +
72

6 +
. . .

3. The formula derived from William Brouncker’s formula for the Generalized Continued
Fraction of π [5]:

π =
4

1 +
12

3 +
22

5 +
32

7 +
. . .

Generally, it is assumed that the numerator of all fractions is 1. If the numerator or
denominator become any other values such as arbitrary values, then we will have Generalized
Continued Fraction.

Definition 3.14. Arbitrary means not assigned to a specific value in mathematics. That is,
we could say

x+ x = 2x

is true for arbitrary numbers for x=R. However, we could not say

x+ x = 2

is true for arbitrary numbers of x since x has a specific value which is 1.

Or, in other words, arbitrary means all in mathematics. Saying

”For all a,b, a+ b = b+ a”

is same as saying

”For arbitrary a,b, a+ b = b+ a”

4. Solutions to Pell’s Equation

4.1. Through Fundamental Solutions and Convergents. As aforementioned in the
subsection Definition 2.4, fundamental solutions are the root of the problems that are used
to construct theorems and problems based on them. They are essential to find solutions
to Pell’s Equation. Finding the fundamental solution should be the priority as it is a lot
easier to find other solutions based on the fundamental solution. Throughout this topic, we
will only focus on the positive integers x and y to give more understandable solutions and
explanations.

The easiest and the most basic method to find the fundamental solution is through trial-
and-error method. If d is a small number, this method can come as handy.
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Theorem 4.1. By changing the value of y, then basing the value of x on it, we can find the
fundamental solutions to the most basic Pell’s Equations.

Proof. Let d be 2. Then, we will have

x2 − 2y2 = 1

We can start by making y equal to 1. Then, we will have

x2 − (2.12) = 1

x2 − 2 = 1

x2 = 2 + 1 = 3

x =
√
3

However, x should be an integer; thus, y cannot be 1.

Then, we will make y equal to 2. Then, we will have

x2 − (2.22) = 1

x2 − 8 = 1

x2 = 9

x = 3

Since both x and y are integers, (3,2) is the fundamental solution to the Pell’s Equation in
which d is 2.

■

However, this method does not come in handy when we encounter greater values of d.
Due to this, we use Continued Fractions, specifically convergents, for the greater values of d.

Theorem 4.2. The fundamental solution of a Pell’s Equation can be found by finding and
and testing each consecutive convergents of

√
d until a solution is found.

Proof. Let d be 6, a greater value than 2. Then, we will have

x2 − 6y2 = 1

α = x−
√
6y = 1

First, we need to find the convergents of
√
6. Thus, in order to that, we must find its place

on the numerical axis. It is greater than 2 and smaller than 3. Thus, it can be written as
√
6 = 2 + z

(
√
6)2 = (2 + z)2

6 = 4 + 4z + z2

2 = z(4 + z)

Now, we need to find z.

z =
2

4 + z

z =
1

2 +
z

2
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This means that √
6 = 2 +

1

2 +
z

2

And,
z

2
is

z

2
=

1

4 + z
Thus, now we have

√
6 = 2 +

1

2 +
1

4 + z
However, we know the value of z. Thus, we now have

√
6 = 2 +

1

2 +
1

4 +
1

2 +
z

2

As you may have noticed, this expression goes on forever. Therefore, the Continued Fraction
expression of

√
6 in abbreviated notation is

[2; 2, 4]

Since we now have the Continued Fraction expression of
√
6, we can start finding the con-

vergents of
√
6. In order to find convergents, we can either apply a formula, similar to the

formula we introduced in subsection Definition 3.1, or we can make z equal to 0 at any given
stage. For

√
6, we will let z be equal to 0 at any given stage.

The first stage is
√
6 = 2 + z; therefore, our first convergent is 2.

The second stage is
√
6 = 2 +

1

2 + z
; therefore, our second convergent is

5

2
.

The third stage is
√
6 = 2 +

1

2 +
1

4 + z

; therefore, our third convergent is
22

9
.

The fourth stage is
√
6 = 2 +

1

2 +
1

4 +
1

2 + z

; therefore, our fourth convergent is
49

20
.

Since
√
6 is an irrational number, it is expressed in the Infinite Continued Fraction form,

and it has infinite numbers of convergents. Owing to this, we will only focus on the first 4
convergents. They are

2

1
,
5

2
,
22

9
,
49

20
Now, we need to find the fundamental solution by applying these convergents to our Pell’s
Equation in which d equals to 6.

x2 − 6y2 = 1
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We will start with the first convergent, (2,1). Now, we have

22 − 6.12 = −2

Thus, the first convergent, (2,1) is not the fundamental solution. So, we will apply the second
convergent. Now, we have

52 − 6.22 = 1

Thus, the second convergent is the fundamental solution. We do not need to apply other
successive convergents to find the fundamental solution anymore. However, they will come
in handy when we try to find other solutions to Pell’s Equation.

■

4.2. Other Solutions of Pell’s Equation. In the previous subsection, we introduced how
to find the fundamental solutions to each Pell’s Equation through trial-and-error method
and Continued Fractions, specifically convergents. Those 2 methods still could be used to
determine the other solutions to Pell’s Equations. Especially, using Continued Fractions is
still one of the most used methods. Owing to this, we will start looking for other solutions,
apart from the fundamental solution, using the aforementioned method.

Theorem 4.3. By finding the convergents of
√
d through Continued Fractions and applying

the convergents to Pell’s Equation, other solutions to the Pell’s Equation can also be found.

Proof. Since we have already found the first 4 convergents and the fundamental solution of√
6, we will try to find the next solution by applying the other 2 convergents to our equation.

Our equation is

x2 − 6y2 = 1

And, the other 2 convergents are
22

9
,
49

20

Now, we will start applying the third convergent, (22,9). Thus, we will have

222 − 6.92 = −2

Since the equation is not equal to 1, the third convergent, (22,9), is not the second solution
to our equation. Due to this, we will apply the fourth convergent, (49,20). Thus, we will
have

492 − 6.202 = 1

Since the equation is equal to 1, the fourth convergent is the second solution to Pell’s
Equation in which d equals to 6.

■

Although this method is relatively easier and less time-consuming than the trial-and-error
method, still, this method also does not come in handy when we try to find other solutions,
apart from the first and second solution, to Pell’s Equation. Moreover, due to this, we will
introduce another theorem and method.

Theorem 4.4. By using the equation (x + y
√
d)n = αn, raising n to different powers, and

then applying the fundamental solution, we can find the other solutions to Pell’s Equation.



14 ADANUR NAS

Proof. Since it is the smallest value that d can get, we will make d equal to 2. Thus, we will
use

x2 − 2y2 = 1

Now, we will use the equation which we introduced in the Theorem 4.4. Thus, we will have

x+
√
2y = α

Since, now we have the equation, we need to start raising its powers. Thus, we will have

(x+
√
2y)n = αn

Now, we need the fundamental solution to apply to equation above. In the proof part of
the subsection Theorem 4.1, we have already found it through trial-and-error method. It is
(3,2). Thus, we will now have

(3 + 2
√
2)n = αn

We know that when n = 1, the solution is (3,2). Due to this, we will start by making n
equal to 2. Thus, we will have

(3 + 2
√
2)2 = α2

9 + 12
√
2 + 8 = 17 + 12

√
2 = α

Now, we need to test whether this solution, (17,12), satisfies the Pell’s Equation or not.

172 − 2.122 = 1

Therefore, our second solution to the Pell’s Equation in which d equals to 2 is (17,12).

In order to find the third solution, we will make n equal to 3. Thus, we will have

(3 + 2
√
2)3 = α3

27 + 54
√
2 + 72 + 16

√
2 = 99 + 70

√
2

Now, we need to test whether this solution, (99,70), also satisfies the Pell’s Equation or not.

992 − 2.702 = 1

Therefore, our third solution to the Pell’s Equation in which d equals to 2 is indeed (99,70).
■

This method is one of the easiest and fastest ways to find the solutions to Pell’s Equa-
tion. This method, particularly, comes in handy when we encounter greater values than 2.
Moreover, this method can be used to find solutions to Generalized Pell’s Equation as well.

4.3. Solutions to Generalized Pell’s Equation. Finding solutions to Generalized Pell’s
Equation is relatively harder and more time-consuming than finding solutions to Pell’s Equa-
tion. As usual, trial-and-error method can be used to find the solutions. However, apart
from finding the fundamental solution, it does not come in handy. In order to spend less time
on finding the solutions to Generalized Pell’s Equation, we take help from Pell’s Equation.

Theorem 4.5. To find the other solutions to Generalized Pell’s Equation, we first need to
find its fundamental solution. Then, we need to make n=1 and find that equation’s fun-
damental solution. Then, we need to apply their fundamental solutions to the equation
(x+ y

√
d)n = αn and raise their powers. Lastly, we need to multiply both of them.
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Proof. First, we will start by selecting a Generalized Pell’s Equation to make calculations to
it. In this proof section, we will only focus on the positive integer x and y. Since it takes
less time, we will use

x2 − 6y2 = 3

First, we need to find its fundamental solution. We will do it through trial-and-error method,
and we will start with making y equal to 1. Thus, we will have

x2 − 6y2 = 3

x2 = 6y2 + 3

x2 = 6.12 + 3 = 9

x = 3

Therefore, the fundamental solution to our Generalized Pell’s Equation is (3,1). Now, we
will apply it to the equation we gave in the Theorem 4.5. We will leave the power at 1.
Thus, we will have

3 + 1
√
6 = α

Now, we will make the equation equal to 1.

x2 − 6y2 = 1

We have already found the fundamental solution to the Pell’s Equation in which d equals
to 6 in the proof part of the subsection Theorem 4.2. It was (5,2). We will again leave the
power at 1, and in order to avoid confusion, we will replace α with β. Thus, we will have

5 + 2
√
6 = β

Now, we need to multiply them. In order to find the second solution our Generalized Pell’s
Equation, we raised the n to 1. Thus, we will have

α.β = (3 + 1
√
6).(5 + 2

√
6)

α.β = 15 + 5
√
6 + 6

√
6 + 12 = 27 + 11

√
6

Now, we need to test whether this solution, (27,11), satisfies our Generalized Pell’s Equation
or not.

272 − 6.112 = 3

Therefore, this solution, (27,11), is the second solution to our Generalized Pell’s Equation,
right after its fundamental solution. Moreover, in order to find third or other solutions to
our Generalized Pell’s Equation we can raise the power to 2 or other greater values.

■
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