
YOUNG DIAGRAMS AND TABLEAUX

AASHIR MEHROTRA

Abstract. We first define Young Diagrams and Young Tableaux, and prove preliminary
results about those structures. We then show the Robinson Schensted correspondence, and
Knuth’s generalisation. Next, we introduce representation theory and state its connection
with Young Tableaux. Finally, we define graded posets of rank n, Sperner posets, posets
quotiented by a group

1. Introduction

Partitions have been studied since antiquity. Traditionally, there have been two main
ways to represent partitions pictorially, Ferrer diagrams and Young diagrams. This paper is
concerned with the later representation. A Young diagram is an array of boxes in which the
rows represent the sizes of the parts of the partitions. For example the partition (4, 1, 1) has
Young Diagram:

We can fill numbers in Young Diagram. These are called Young Tableaux. For the example
above, we could have the following Young Tableaux:

1 3 5 6

2

4

The tableau above is also standard as each row and column have numbers strictly increasing
from left to right and from up to down.
If n if a fixed natural number, We can use Young Diagrams and a conjugation argument to
prove that the number of partitions of n with m parts equal the number of partitions of n
with largest part m.
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One can use the Robinson-Schensted correspondence to give bijection from two same
shaped SYTs (Standard Young Tableaux) of size n to all n permutations. We construct an
algorithm that creates a tableau by ”inserting’ numbers from a permutation (represented by
a string).
We then also construct a recording tableau, whose numbers represent when each cell in the
insertion tableau were created. This gives the desired bijection we require.
We also provide a similar algorithm in the case of two-line arrays (a two dimensional gener-
alisation of partitions).
A two dimensional array is a 2×m matrix with positive integers, with some sort of lexico-
graphic order. For example: (

1 1 1 3 3 4 5
1 1 3 2 3 2 1

)
is a two dimensional array as the first row is weakly increasing, and the second row is also
weakly increasing provided the numbers they correspond to in the first row are the same
(this is similar to the usual lexicographic order on the complex numbers C.

Representations are homomorphisms from a group to the group of all invertible operators
on some vector space V . If the dimension of V is finite, then we can also create a group
homomorphism for G to the group of all n× n invertible matrices in the base field of V .
The notion of irreducible representations is crucial, as it helps us decompose any represen-
tation as a direct sum of irreducible representations (at least when the group related to the
representation is finite).
The number of isomorphic classes of irreducible representations of G can be described group
theoretically: it’s equal to the number of conjugacy classes of G.
The formula derived from the Robinson-Schensted correspondence is a special case of the
formula describing the relation between |G| and the dimensions of the irreducible represen-
tations.

Some partially ordered sets can be graded of a certain finite rank n. One example is the
Boolean algebra Bn of all subsets of the n-element set {1, 2, . . . , n}.
A Sperner poset is a partially ordered set where the largest antichain (a subset in which in
two elements are comparable) has the same size of the largest rank set (we define ranks in a
graded poset n in the body of the paper).
We state that Bn has the Sperner property, and so does Bn/G (the Boolean algebra quo-
tiented by a group action G on Bn).
Lastly, we state that the poset L(m,n) (of partitions with at most m parts and with largest
part n) is isomorphic to Bmn/Gmn, where Gmn is the permutation group acting on a m× n
rectangles with cells, in which two cells in the same row stay in the same row.
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2. Definitions and the RSK Algorithm

We first go over a few tools that we would need throughout the paper.

Definition 2.1. Let n ∈ Z≥0. Define a partition of n to be a weakly decreasing set of
integers λ1 ≥ λ2 ≥ · · · ≥ λr > 0, such that

∑r
i=1 λi = n.

When λ is a partition of n, we denote λ ⊢ n or |λ| = n, and call n the size of λ.
The partition function p(n) is the number of partitions of n.

Rarely, we add an infinite string of zeros after the all non-zero terms of the partition, this
is done to compare partitions of different sizes with the following order:

Definition 2.2. Let λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) be partitions (perhaps of different
sizes). We say λ ≥ µ if λi ≥ µi for all natural numbers i (this is commonly called a
lexicographic order).
This gives rise to a partial order Y on the set of all partitions of all whole numbers (including
∅ = (0, 0, . . .), and the poset (partially ordered set) formed is called Young’s lattice.
The restriction of the poset Y on the set of partitions of with at most m non-zero parts and
with largest part at most n is denoted by L(m,n).

The poset defined above is called a lattice as it has additional properties that make it a
lattice (which we shall not go over for the purposes of this paper).
We will now define the most important structure of the paper, namely the Young Diagram
of a partition.

Definition 2.3. A Young Diagram of a partition λ is an array of left-justified boxes with
the number of boxes in each row corresponding to the parts of the partition.

This is pretty vague, so it’s important to show an example. When λ = (5, 3, 1), we have
the following Young diagram for λ:
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.

Definition 2.4. A Young Tableau is a filling of a Young diagram with alphabets, usually
such alphabets have a total order, or are just positive integers.
A Standard Young Tableau (SYT for short), is a tableau such that the entries in each
row and each column are increasing from left to right and from up to down. We use the
positive integers from 1 to n exactly once for this.

This is an example of a standard tableau:

1 3 5

2 4 6

7

This is an example of a non-standard tableau as 7 is to the left of 3, and 5 is above 3.

1 4 5

2 7 3

6

Let’s prove a couple of basic theorems:

Proposition 2.5. Let n ∈ N be fixed. The number of partitions of n with m parts is equal
to the number of partitions of n with largest part m.

Proof of Proposition: 2.5. Consider the Young diagram of a partition of n with m parts. For
example, let’s let λ = (5, 4, 1), n = 10 and m = 3. So the Young diagram would be

.

For a partition λ, define the conjugate partition λ̃ to be the partition that is associated with
the ”reversed Young diagram”. This means that the rows of λ’s Young diagram become
the columns of λ̃’s Young diagram, and vice versa (note that conjugation is an involution,
meaning that conjugating a partition twice gives back the original partition). Hence, the

Young diagram for λ̃ would look like
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.

corresponding to the partition (3, 2, 2, 2, 1). One can observe that if λ has m parts, then λ̃
has largest part m.
Now let A be the number of partitions of n with m parts, and B be the number of partitions
with largest part m. The map ∼1: A −→ B (representing conjugation) is well defined
according to the previous paragraph.
The above map has a two sided inverse, namely ∼2: B −→ A (also representing conjugation).
Hence, ∼1 is a bijection, and |A| = |B|, proving the theorem. ■

In particular, we have L(m,n) = L(n,m). We know state and prove the cardinality of
L(m,n)

Proposition 2.6. |L(m,n)| =
(
m+n
m

)
It easily follows from this proposition that we have L(m,n) = L(n,m).

Proof of Proposition: 2.6. Any Young diagram of a partition λ belonging to L(m,n) will fit
into a m× n rectangle, perhaps like

To choose a specific Young diagram, we can construct a sequence of n ”U ’s and m R′s,
corresponding to a lattice path starting from the bottom left corner, and ending with the
top right corner, and only using up and right moves. For the rectangle shown above, if we
have the sequence RRURRUUR, that would correspond to the Young Diagram

An U corresponds to moving to the next part with the same size, whereas a R corresponds
to incrementing the size of the part on which the walk is at.
Since we have m+ n symbols to write, and m choices for the positions of the Rs, we hence
we the count to equal

(
m+n
m

)
. ■



6 AASHIR MEHROTRA

We can represent permutations (bijective functions σ on {1, 2, . . . , n}) as a string of num-
bers from 1 to n (like a1a2 . . . an such that ai = σ(i).
Here is the statement of the Robinson-Schensted correspondence:

Theorem 2.7. There exists a bijection between ordered pairs of same-shaped SYT’s over all
partitions for n and n-permutations.
Formulaically,

n! =
∑
λ⊢n

(fλ)2

Proof of Theorem: 2.7. We’ll prove this theorem algorithmically.

Algorithm 2.8. [Robinson-Schensted correspondence] Let a1a2 . . . an be a permutation. We
initially have the tableau with the single cell containing a1. We take the remaining numbers in
the partition and create a tableau of size m, by performing the following algorithm inductively:
Initialize x1 = ai (we do this n− 1 times for i = 2, 3, . . . n)

• If xi is bigger than or equal to all numbers in the ith row, attach xi at the end of the
row

• Else if ∃y > xi in the ith row, replace the smallest and rightmost y (satisfying the
inequality above) with xi, and let y = xi+1

Here is an example of the algorithm:
Let the permutation be 3124. We first have:

3

Next, we replace 3 by 1, and bring 3 in the second row

1

3

The next two steps we will add 2 and 4 to the first row, hence we have

1 2

3

and finally

1 2 4

3

The algorithm mentioned creates the insertion tableau. To create the bijection, we also
create the recording tableau. This is to record in what iteration does the cell get created.
For 3124, the recording tableau is



YOUNG DIAGRAMS AND TABLEAUX 7

1 3 4

2

We need to create the inverse bijection for the the theorem to be completely proven.
Suppose we have the following two Young Tableaux (the first being the insertion tableau;

the second being the recording tableau)

1 2 4

3

1 3 4

2

The recording tableau shows that the top right cell was the last to be added. This means
that, in the insertion tableau, the 4 was added to the first row last, hence the final number
in our permutation must be 4. We then have the following tableaux

1 2

3

1 3

2

We can conclude that 2 was the second last number in the permutation. Continuing like
this, we retrieve our original permutation 3124. ■

We now proceed to Knuth’s generalisation.

Definition 2.9. A two-line array (occasionally called a generalized permutation is defined
like (

i1 i2 . . . im
j1 j2 . . . jm

)
where

• i1 ≤ i2 ≤ . . . ≤ im
• If iu = iv for some u ≤ v, then ju ≤ jv

We now define a structure similar to a SYT.

Definition 2.10. A semistandard Young tableau (SSYT for short) is a Young Tableau
in which entries in the rows are weakly increasing from left to right, and entries in the
columns are strictly increasing from up to down.

Hence, all SYT’s are SSYTS (with the converse not being true).
Here’s an example:

1 1 1 3 4

2 3 3

5
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Similar to above, we can create a bijection from two-line arrays to pairs of same-shaped
SSYTs. We’ll give a brief sketch of the idea but not go too in depth.
We’ll now try creating an algorithm similar to Algorithm 2.8. First, we use the insertion
algorithm to create a tableau using the sequence j1j2 . . . jm.
For example, suppose we have the two-line array(

1 1 1 3 3 5
1 2 2 3 3 1

)
We then have the ”j-sequence” to be 122331. Applying Algorithm 2.8 to the j-sequence, we
get

1 1 2 3 3

2

We can create a recording tableau, just like in the partition case:

1 2 3 4 5

6

Finally, we places the entries 1, 2, 3, 4, 5 and 6 with the ”i-sequence”, in this case 1, 1, 1, 3, 3
and 5. This gives us another SSYT:

1 1 1 3 3

5

We encourage the reader to go further in the study of the Robinson-Schensted-(Knuth)
Algorithm.
For example, Viennot’s geometric construction of the insertion and recording tableaux can
help prove that, if a permutation σ is mapped to the pair of SYTs (P,Q), then the inverse
of σ, σ−1 would be mapped to (Q,P ).
Another fundamental fact regarding the algorithm is that the longest increasing subsequence
of σ represented as a string is equal to the length of the first row of P (and Q).
Similarly, we have the fact that the longest decreasing subsequence of σ is equal to the length
of the first column of P (and Q).
Both of these results are can be observed directly from the definition of the algorithm.
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3. Group Representations

We’ll now define basic concepts of group representation, in order to explain it’s connection
to Young Diagrams. We assume the reader is aware of the basic definitions of a group.

Definition 3.1. A group representation of a group G is a vector space V along with a
group homomorphism ϕ : G −→ GL(V ). Over here, GL(V ) is the space of all invertible
linear operators on V , with group operation being function composition.
The dimension of a representation (V, ϕ) is the vector space dimension of V (provided that
it is finite).

We usually assume that V is a finite dimensional complex vector space. In that case, we
may note that there exists an isomorphism:

ψ : GL(V ) −→ GLn(C)

where n is the dimension of V and GLn(C) is the group of all invertible n×n matrices, with
group operation being matrix multiplication. The isomorphism ψ essentially represents an
operator L ∈ GL(V ) as a matrix by making it act on a basis of V .
We can hence think of group representations as group actions being ”represented” by ma-
trices, by considering the homomorphism ψ ◦ ϕ from G to GLn(C).

Definition 3.2. Let (V, ϕV ) and (W,ϕW ) be representations of G. A homomorphism of
representations is a homomorphism of vector spaces Φ : V −→ W , such that the following
commutative diagram holds

V
Φ−−−→ WyϕV (g)

yϕW (g)

V
Φ−−−→ W

for every g ∈ G. Formulaically, this means that Φ ◦ ϕV (g) = ϕW (g) ◦ Φ is true for every
g ∈ G.
An isomorphism of representations is a homomorphism of representations where the
function Φ is an isomorphism of vector spaces.

Naturally, we can define equivalency between representations, which leads to isomorphism
classes of representations.

Definition 3.3. Let (V, ϕ) be a representation of G.
An invariant subspace is a subspace W ⊂ V such that

• W is non-trivial (W ̸= 0 or V )
• ∀w ∈ W and ∀ g ∈ G, we have ϕ(g)(w) ∈ W

A sub-representation is a pair (W,ϕ|W ), where W is an invariant subspace of (V, ϕ) and
ϕ|W is the restriction of ϕ onto GL(W )

One can show that a sub-representation is well-defined (up to isomorphism) and satisfies
the condition on a representation.
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Definition 3.4. An irreducible representation is a representation (V, ϕ) that has no
sub-representations (or invariant subspaces).

Recall the definition of the direct sum of two vector spaces V and W . An element of
V
⊕

W is of the form v +w, where v and w are elements of V and W respectively. If BV is
a basis for V , and BW is a basis for W , then it’s easy to see that the set BV ∪ BW is a basis
for V

⊕
W .

Definition 3.5. If (V, ϕV ) and (W,ϕW ) are representations of G, then define the direct
sum representation to be (V

⊕
W,ϕ), where ϕ(g)(v + w) = ϕV (g)(v) + ϕW (g)(w)

One can check that this definition is well defined.

Theorem 3.6 (Maschke’s Theorem). Any representation (V, ϕ) of a finite group G is a
direct sum of irreducible representations (of G).

Irreducible representations are the ”building blocks” of all representations, hence making
them important to study and classify.
Recall that two elements g1, g2 ∈ G are conjugate if ∃h ∈ G such that g2 = h−1g1h. This
can be proven to be an equivalence relation, and give rise to the conjugacy classes of G.

Theorem 3.7 (Corollary of Orthogonality Relations). Assume G is finite. There are finitely
many isomorphism classes of irreducible representations for a given representation (V, ϕ) of
G, the number of classes being equal to the number of conjugacy classes of G.
If d1, d2, . . . dk represent the dimensions of the irreducible representations of G, then di divides
|G| for all i, and

|G| =
k∑

i=1

d2i

Notice that the summation above is similar to the summation for the Robinson-Schensted
correspondence:

n! =
∑
λ⊢n

(fλ)2

They are in fact the same equation, the latter summation is the general summation when

applied to G = Sn, the symmetric group of all n-permutations, with group operation being
function composition.
It is true that the number of conjugacy classes in Sn is equal to the number of partitions of
n, this is because two permutations σ1 and σ2 are in the same conjugacy class if and only if
they have the same number of cycle type (cycle type here being the size of the cyle).
For example, (4, 5)(1, 2, 3)(6) and (6, 4)(2, 5, 3)(1) are conjugate to each other.
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4. Sperner property of L(m,n)

As mentioned before L(m,n) is a poset with size
(
m+n
m

)
. Recall that a poset is a relation

”≤” on a set X such that

• x ≤ x for all x ∈ X
• x ≤ y and y ≤ x implies x = y
• x ≤ y and y ≤ z implies x ≤ z

Definition 4.1. An element y covers x ins a poset X if x < y and there exists no z ∈ X
such that x < z < y.

We can now define between maps between posets

Definition 4.2. A poset homomorphism between two posets (X1,≤1) and (X2,≤2) is a
function ψ : X1 −→ X2 such that x ≤ y implies ψ(x) ≤ ψ(y)
A poset isomorphism is a poset homomorphsim that is also a bijection.

If ψ is a poset isomorphism, then so is ψ−1.
The fact that ψ−1 is bijective follows immediately from the fact that ψ is bijective.
When u = v, it’s clear that ψ−1(u) ≤ ψ−1(v) (as ψ−1(u) = ψ−1(v)).
Assume u < v. For the purposes of contradiction, say we have ψ−1(u) > ψ−1(v). Then,
ψ(ψ−1(u)) > ψ(ψ−1(v)) (as ψ is a poset homomorphism).
This gives us u > v (as ψ ◦ ψ−1 = id). This contradicts u < v, hence proving the claim.
We now state more definitions related to posets:

Definition 4.3. A totally ordered set is a partially ordered set where every pair of
elements are comparable. This means that at least one of x ≤ y or y ≤ x is true.
A chain is a totally ordered subset of a partially ordered set.

For example, if our poset is the Boolean algebra B7 of all subsets of {1, 2, . . . , 7} (including
the empty set ∅), then the following is an example of a chain in our poset:

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 4, 5, 7} ⊂ {1, 2, 3, 4, 5, 6, 7}
The above chain has length 4 as there are 4 subset signs (⊂s) in the set above.
We say that a finite poset is graded of rank n if every maximal chain in the poset has length
n (maximal here meaning that it’s not contained in any other chain).
All Boolean algebras Bn are graded of rank n, this is not hard to prove.
A chain x0 ≤ x1 ≤ . . . xn of length n is said to be saturated if xi covers xi−1 for every
i = 1, 2, . . . , n. A chain is unsaturated if it is not saturated (obviously).
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Note that all maximal chains are saturated (because if a chain were unsaturated, it meant
one could add an element in between two elements in the chain, meaning the chain is not
maximal).
However the converse is not true, a chain can be saturated, meaning one couldn’t add
elements in between the chain, but one could still add element in the very beginning or the
very end.
For example, if we have the following saturated chain in B6

{1, 2} ⊂ {1, 2, 6} ⊂ {1, 2, 3, 6}
then, it’s clear that every element covers the element before, but we can the element {1} in

the beginning (or add the element {1, 2, 3, 5, 6} in the end) to create a bigger chain contained
in that chain, thus showing that the chain isn’t maximal.

Definition 4.4. Let X be a finite poset that is graded of rank n. An element x ∈ X has
rank i if the largest saturated chain of X with largest element x has length X.
We denote ρ(x) = i if x has rank i in the poset X.

Note that the singleton set x is a saturated chain, and with the fact that X is finite, the
above definition is well-defined.
Note that the empty set ∅ has rank 0, and the full set X has rank n.

Definition 4.5. Let Xi be the set of all elements in X with rank i.
Let xi = |Xi| (the cardinality of Xi

It’s clear then that X = X0 ⊔X1 ⊔ ... ⊔Xn (where ⊔ is the disjoint union operator.
For the set Bn, we have the sets (Bn)i like so:

(Bn)i = {x ⊆ {1, 2, . . . , n} : |x| = i}
(Note that ”:” means such that)

Since the number of element with cardinality i is
(
n
i

)
, we have that

(bn)i =

(
n

i

)
A couple of more definitions:

Definition 4.6. A poset X that is graded of rank n is called rank symmetric if xi = xn−i

is true for all i = 0, 1, 2, . . . , n.
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X is called rank unimodal if there exists 0 ≤ i ≤ n such that

x0 ≤ x1 ≤ · · · ≤ xi ≥ xi+1 · · · ≥ xn

If we assume that our poset X (graded of rank n) is both rank symmetric and rank
unimodal, then it’s clear that

x0 ≤ x1 ≤ x2 · · · ≤ xn
2
≥ · · · ≥ xn

when n is even. When n is odd, we have

x0 ≤ x1 ≤ x2 · · · ≤ x⌊n
2
⌋ = x⌈n

2
⌉ ≥ · · · ≥ xn

The Boolean algebra Bn is rank symmetric and rank unimodal.

It’s a common fact that |Bn| = 2n (each element 1, 2, . . . , n has two choices; either it is in
an element of Bn, or it isn’t).
We now define the ”opposite” of a chain:

Definition 4.7. If X is a partially ordered set, then an antichain A contained in X is a
set in which no two elements are comparable.
In other words, neither x ≤ y nor y ≤ x is true for any elements x and y in A

Every set Xi (as defined above) is an antichain in X.

This is because if there existed distinct x and y in Xi such that x < y, then we could create
a chain larger than length i that has maximal element y (this can be done by adjoining y
after x’s i length chain where it’s the maximal element).
We would like to count the size of the largest antichain in a poset.
Specifically for the Boolean algebra Bn. The size of the largest rank set (i.e, theX1, X2, . . . Xn

list of sets with elements of same rank) in Bn is
(

m
⌈n
2
⌉

)
for all natural numbers n.

Definition 4.8. A poset X that is graded of rank n is called a Sperner poset (or has the
Sperner property) if the largest antichain in X is that size of the largest rank set.
We can write this mathematically (let A ◁ X denote that A is antichain inside of X):

max{|A| : A ◁ X} = max{|Xi| : 0 ≤ i ≤ n}
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It turns out that Bn has the Sperner property.
This means that the largest antichain inside Bn has size

(
n

⌈n
2
⌉

)
(the size of the largest rank

set (namely X⌈n
2
⌉)

This can be proven using linear algebra, however we won’t go over that in this paper.
We now define Boolean algebras quotiented by finite groups

Definition 4.9. A poset automorphism on a poset X is a poset isomorphism from X to
itself.
Let π ∈ Sn be a permutation. π can act on a set x ∈ Bn as follows:

π(x) = π({a1, a2, . . . , ai}) = {aπ(1), aπ(2), . . . , aπ(i)}
(the action above is actually known as a group action)

Let G be a subgroup of Sn. Define the quotient poset Bn/G to be the orbits of the group
action of G on Bn

An orbit is the set of all elements that can be reached to one another via a group action.
More specifically, an orbit is an equivalence class on the following equivalence relation:

x ∼ y ⇐⇒ ∃ π ∈ G : π(x) = y

(this can be proven to satisfy the conditions on an equivalence relation).

Any group G is isomorphic to a subgroup of some Sn for some n ∈ N (this is known as
Cayley’s theorem).
It also turns out that Bn/G is also a graded of rank n, rank symmetric and unimodal, and
Sperner. The proof will also be omitted, as we now try showing that L(m,n) is isomorphic
to Bn/G for some n ∈ N and for some group G.
We now construct this group G.

Definition 4.10. Say we have a m× n rectangle (call it Rmn).

For example, we have a 5× 6 rectangle.
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We have the group Smn that permutes the cells of Rmn.
Define Gmn, a subgroup Smn to be the group that contains permutations that

• permutes individual rows freely
• then permutes those rows itself

The definition above implies that |Gmn| = m!(n!)m (as there are m rows, in which we
permute n cells, creating the term (n!)m. The m! comes from permuting the rows).
For example, if we have the following in R56:

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

Then a valid permutation in G56 would be:

8 7 9 10 12 11

6 2 3 1 4 5

30 25 26 24 27 28

19 20 22 21 23 24

17 16 14 18 15 13

We omit the proof that L(m,n) is isomorphic to Bmn/Gmn under poset isomorphism.
Note that Gmn is actually the wreath product of Sm and Sn

The fact that L(m,n) has applications in number theory. Specifically, variants of the Erdös-
Moser conjecture (now proven), which concern the maximizing number of times a set in the
real numbers sums to the same number.
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