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1 Introduction

The BBP formula was the first formula which allowed for the computation digits of 7 in binary without having
to compute all the digits before it. This was inspired by other similar types of formulas for numbers like log(2).
The formula has been used to verify computations of many digits of .
In this paper, we will prove the BBP formula and other BBP-type formulas.

2 The sums

2.1 The Borwein-Bailey-Plouffe formula
Theorem 2.1. The Borwein-Bailey-Plouffe formula
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Proof. We can manipulate this infinite sum into an integral by noting that for & < 8
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Thus, our sum is equal to
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We can clean up this integral by substituting y = v/2x to get
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The numerator and denominator have a common factor of 4% + 2 and y2 + 2y + 2, so we can simplify to
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Evaluating the left integral easily gives, with the substitution v = y? — 2,

The right integral can be broken up into
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Other summations such as
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can be proved similarly. They can also be used to compute the nt* digit of the constants in various bases. To
avoid unwieldy sums, we define a more compact notation for such BBP-type formulas.

Definition 2.2.
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where s,b,n are integers and A = (ay,---a,) is a vector of integers.

2.2 BBP-type formulas for logarithms
Many logarithms have binary BBP formulas.
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and
log(3) = P(1,4,2,(1,0)).

Proof. We know that
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which can be verified by integrating the power series for ﬁ Evaluating at % gives
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Evaluating at 3 7 gives
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We can combine these to get
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Proposition 2.4.

4
log(5) = 5= P(1,3%,4,(3%,3,1,0)).



Proof. We want to evaluate
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Substituting u = 1 + 2?2 for the first integral gives
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Evaluating the second integrals gives
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Evaluating the last integral gives
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Combining it all gives
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as desired. O

Binary BBP representations have been found for the logarithms for the following primes:

2,3,5,7,11,13,17,19, 29, 31,37, 41, 43, 61,73, 109, 113, 127, 151, 241, 257, 331,
337,397,683, 1321, 1429, 1613, 2113, 2731, 5419, 8191, 14449, 26317, 38737, 43691, 61681
65537, 87211, 131071, 174763, 246241, 262657, 268501, 279073, 312709

It is unknown whether there are infinitely many primes which have a BBP formula or even whether log(23) has
a BBP formula.

Proposition 2.5.
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Integrating gives
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where we integrate the sum term by term and the rational function by partial fractions. Evaluating at % gives
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as desired O

2.3 Other BBP-type formulas

Several formulas have also been found for arctangent including

arctan(2) = 2—3P(1 24.8,(23,0,22,0,-2,0,-1,0))

as well as
arctan(4/5) = 2%P(l, 22040, (0,219,0, —2'7 .3, -215.3.5,0,0,2% - 5,0,2'%,0,-213 - 3,0,0,210 - 5,
11.50,2',0,21°0,0,0,27-5,25-3-5,27,0,-2°-3,0,0,0,2%-5,0,2%, -5, -2-3,0,0,0,0))
Other binary BBP formulas have been found or conjectured for numbers such as

log2(2), log?’(2)7 log4(2), log5(2), €(3),¢(5), w2, 73 1t G.

Ternary BBP formulas have also been found/conjectured for numbers such as

V3,77, l0g(2),10g(3), log"(3).

3 Finding Formulas and Digits

These formulas are largely experimentally generated by a computer search and can be used to compute digits
in various bases.

When doing a computer search for BBP-type formulas, parameters values are picked for s,b, and n in
P(s,b,n,A). The individual sums are evaluated and PSLQ is used to find integer relations in the hopes of
discovering a formula.

We consider
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and use it to find digits of .
We define S1 = Y 72, ToFBRTT) 8k+1) We can compute the hexadecimal digits from position d + 1 and on

by considering frac(162S;) = Zk:o %ﬁ‘fsw (mod 1) + Y772 41y % (mod 1) The terms of the first
summation can be computed fairly quickly because modular exponentiation is fairly fast. The second summation
only requires a few terms in order to get the desired precision.

Using this formula is a relatively fast way to verify accuracy when computing digits = with fast converging
series, by checking later digits because errors in computations would propagate to the last digits. For example,

in 2010, Alexander Yee and Shigeru Kondo computed 5 trillion digits of pi. They used two BBP-type formulas

for verification:
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which took around 65 hours running simultaneously on two different computers to compute 32 hexadecimal digits
ending with the 4,152,410, 118, 610" digit, whereas the main computation, using the Chudnovsky Formula:
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took about 90 days.

The quadrillionth binary digit of m was computed with this method.

This method has implications as to how quick digits of m can be calculated. Bailey, Borwein, and Plouffe
then also provided methods for computing the d** hexadecimal digits of 7, log(2), 7 and log®(2) in O(dlog® d)
and O(log(d) space. This has later been shown for G, 73, log®(2), ¢(3), 7%, log*(2),log”(2), {(5) as well. This is
an improvement on previous algorithms which typically needed had linear space complexity. It is surprising
that the digits of # can be found without having to compute the digits before it and has possible implications
regarding the normality of constants such as .
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