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Abstract. In this paper, we will discuss the history of Euler’s Pentagonal Number The-
orem and the different ways numerous mathematicians have proved it, such as Franklin’s
proof. Additionally, we will elaborate on Jacobi’s triple product formula.

1. Pentagonal Numbers

Pentagonal numbers get their name because they are numbers that can be shown as a
pentagonal number of dots. However, there is a more precise definition:

Definition 1.1. The pentagonal numbers are all numbers of the form 3n2−n
2

, where n ≥ 1.

However, for the Pentagonal Number Theorem, we’ll need something a bit more general:

Definition 1.2. The generalized pentagonal numbers are all numbers of the form 3n2−n
2

where n is taking values from the sequence 0, 1,−1, 2,−2, 3,−3, 4, . . .

In this paper, we will denote the pentagonal numbers as wk. This is a simple definition
and it works quite well for us.

2. Partitions

Partitions are used widely in Franklin’s proof of Euler’s pentagonal number theorem.

Definition 2.1. A partition of a numbern is a representation of n as a sum of positive
integers. Order does not matter.

For example 4 has 5 partitions: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. Euler’s
pentagonal number theorem implies a recurrence for finding p(n), where p(n) is the amount
of partitions of n:

p(n) =
∑
k

= (−1)k−1 · p(n− gk).

where k takes the value of all nonzero integers and gk is the kth generalized pentagonal
number.

There is an identity by Euler we will prove:
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Figure 1. The pentagonal numbers

Theorem 2.2. Let x be a real number, then

(1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . )(. . . ) =
∑

p(n)xn

Proof. For this identity we will use the distributive law: to multiply (a+ b)(c+d), we choose
one of a and b from column A. Then, we choose on of c and d from column B. After that, you
add up the possibilities. In this example we can get ac+ad+bc+bd. We can apply this trick
to larger products too. So too evaluate this, we can apply the same trick in the following
manner: we choose xk1 from column A, x2k2 from column B, x3k3 from column C, on and on.
After that we multiply them, to get xk1+2k2+3k3+sks , and then add up the possibilities to get∑

k1,k2,...

xk1+2k2+3k3+sks

This is a sum of the powers of x, so we can get∑
k1,k2,...

xn.

However, the term xn will occur as many times as we can write n = k1 + 2k2 + · · · + sks.
This is a fancy way to write a partition, so the sum becomes

∑
p(n)xn.

�

Here is another theorem to compute partitions:

Theorem 2.3.
1

(1− x)(1− x2)(1− x3) . . .
=

∑
p(n)xn

Proof. This follows quite easily from the first formula: we take inverses of the series on the
left side, and we are done. �

3. Euler’s Pentagonal Number Theorem

Now, lets move onto one of Euler’s most profound discoveries, the Pentagonal Number
Theorem. For more on the history refer to [Bel10].
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Theorem 3.1. The Pentagonal Number Theorem states that
∞∏
n=1

(1− xn) =
∞∑

k=−∞

(−1)kxk(3k−1)/2 = 1 +
∞∑
k=1

(−1)k · (xk(3k+1)/2 + xk(3k−1)/2).

Notice the k(3k+1)
2

and the k(3k−1)
2

in the exponents of the x’s in the sum. So in simpler
terms, this means that (1−x)(1−x2)(1−x3) · · · = 1−x−x2 +x5 +x7−x12−x15 +x22 +x26,
where the exponents for the right hand side are the generalized pentagonal numbers.

There are many proofs of this theorem but we’ll look at two: Euler’s original proof, and
Franklin’s extraordinarily simple proof.

Proof. We first let A0 =
∏∞

k=1(1− zk). We will use the identity

N∏
k=1

(1− ak) = 1− a1 −
N∑
k=2

ak(1− a1) . . . (1− ak−1).

We can prove this by induction. Then, we can use the identity with ak = zk and N =∞ to
get

A0 = 1− z −
∞∑
k=2

zk(1− z) . . . (1− zk−1)

= 1− z −
∞∑
k=0

zk+2(1− z) . . . (1− zk+1).

Then, for n ≥ 1 let An =
∑∞

k=0 z
nk(1 − zn) . . . (1 − zn+k). So, A0 = 1 − z − z2A1, and for

n ≥ 1 we have

An = 1− zn +
∞∑
k=1

znk(1− zn) . . . (1− zn+k)

= 1− zn +
∞∑
k=1

znk(1− zn+1) . . . (1− zn+k)−
∞∑
k=1

zn(k+1)(1− zn+1) . . . (1− zn+k)

= 1− zn + zn(1− zn+1) +
∞∑
k=2

znk(1− zn+1) . . . (1− zn+k)−
∞∑
k=1

zn(k+1)(1− zn+1) . . . (1− zn+k)

= 1− z2n+1 +
∞∑
k=0

zn(k+2)(1− zn+1) . . . (1− zn+k+2 −
∞∑
k=0

zn(k+2) − (1− zn+1) . . . (1− zn+k+1)

= 1− z2n+1 −
∞∑
k=0

zn(k+2)+n+k+2(1− zn+1) . . . (1− zn+k+1)

= 1− z2n+1 − z3n+2

∞∑
k=0

z(n+1)k(1− zn+1) . . . (1− zn+k+1)

= 1− z2n+1 − z3n+2An+1
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Figure 2. The first diagram shows the partition of 20 into 7 + 6 + 4 + 3.
The second diagram shows that result of the operation.

Figure 3. The first diagram shows when m = s and the rightmost diagonal
and bottom row meet, and the second diagram shows if we attempted to
move the rows back.

We can then check by induction that for all M ,

A0 = 1− z +
M∑
n=1

(−1)n(zn(3n+1)/2 − z(n+1)(3n+2)/2) + (−1)M+1z(M+1)(3M+2)/2Am+1.

Taking M =∞ gives us the pentagonal number theorem. �

Now that we have looked at Euler’s proof, let’s look at Franklin’s. Franklin’s involves a
Ferrers diagram of any partition of a number n into distinct parts.

Proof. Let m be the number of elements in the smallest row of the diagram, and then let s
be the number of elements in the rightmost 45 degree line.

Take the right most 45 degree line and move it to form a new row, as in Figure 2 where
n = 20 and we are using the partition 20 = 7+6+4+3.

If m ≤ s, we can reverse the process by moving the elements of the last line to the first
m rows, and we get back where we started. If we do this, we always change the number of
rows and when we do the process again, we get back where we started. This enables us to
pair off Ferrers diagrams contributing 1 and -1 to the xn term of the series, resulting in a
net coefficient of 0. There are only 2 cases in which this does not happen:

(1) The bottom and the right most row meet and m = s

To see how it looks and the result of the operation, refer to figure 3. We do the
operation and this does not change the amount of rows, so doing it again would not
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Figure 4. When m = s + 1 and the rightmost diagonal and bottom row meet

take us back to the original diagram. If there are m elements in the last row of the
first diagram,

n = m + (m + 1) + (m + 2) + · · ·+ (2m− 2) =
m(3m− 1)

2
=

k(3k − 1)

2
,

where k = m. Note that the sign associated with this partition is (−1)s, which by
construction equals (−1)m and (−1)k.

(2) When m = s + 1 and the rightmost diagonal and bottom row meet

We would want to move the right diagonal to the bottom row, shown in Figure
4, but that would give us two rows with the same amount of elements, which is
not allowed because we are counting partitions into distinct parts. Since this is the
previous case, but we have one fewer row, so we have

n = m + (m + 1) + (m + 2) + · · ·+ (2m− 2) =
(m− 1)(3m− 2)

2
=

k(3k − 1)

2

where k = 1−m. Here the associated sign is (−1)s with s = m− 1 = −k, therefore
the sign is again (−1)k, so we are done.

�

4. Jacobi’s Triple Product Formula

It actually turns out that Euler’s Pentagonal Number Theorem is just a special case of
Jacobi’s Triple Product Identity.

Theorem 4.1. (Jacobi’s Triple Product Identity): If z 6= 0 and |x| < 1,

∞∏
n=0

(1− x2n+2)(1 + x2n+1z)(1 + x2n+1z−1) =
∞∑

n=−∞

xn2

zn.

There are also multiple proofs for this identity, but we’ll do George E. Andrews’ extremely
short proof. However, this uses 2 identities, which are easily verified.

Proof. First, let’s establish the two identities that we will need.

Lemma 4.2. Given |x| < 1,

∞∏
n=0

(1 + xnz) =
∞∑
n=0

xn(n−1)/2 · zn

(1− x) . . . (1− xn)
.

And now for the second one:
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Lemma 4.3. Given |x| < 1 and |z| < 1,
∞∏
n=0

(1 + xnz)−1 =
∞∑
n=0

(−1)n · zn

(1− x) . . . (1− xn)
.

We can use these identities to our advantage:
∞∏
n=0

(1 + x2n+1 · z) =
∞∑
n=0

xn2 · zn

(1− x2) . . . (1− x2n)
,

by the 1st identity. Simplifying further, we get
∞∑
n=0

xn2 · zn ·
∏∞

j=0(1− x2n+2j+2)∏∞
j=0(1− x2j+2)

,

=
1∏∞

j=0(1− x2j+2)
·
∞∑

n=−∞

xn2 · zn ·
∞∏
j=0

(1− x2n+2j+2),

where all the terms with the negative n are 0. Then, by using identity 1 again, we get

1∏∞
j=0(1− x2j+2)

·
∞∑

n=−∞

(xn2 · zn) ·
∞∑

m=0

(−1)m · xm2+m+2nm

(1− x2) . . . (1− x2m)
,

=
1∏∞

j=0(1− x2j+2)
·
∞∑

m=0

(−1)m · (xz−1)m

(1− x2) . . . (1− x2m)

∞∑
n=−∞

x(n+m)2zn+m,

=
1∏∞

j=0(1− x2j+2)

∞∏
j=0

(1 + x2j+1z−1)−1
∞∑

n=−∞

xn2

zn,

by identity 2 and replacing n + m with n. This argument is valid if |x| < |z|. For all
nonzero z, we can use analytic continuation. �
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