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Abstract

In this article, we reintroduce the idea of theta functions, noting their properties and their
role in the broader scope of mathematics.

1 Introduction and Definitions

We say that an integer m is ”represented” by an integer valued quadratic form if there is a
solution, with quadratic form q, that satisfies q(x1, x2...) = m. Then, let

rq(m) := {~x ∈ Zn : q(~x) = m}

or, the number of representations of m in q. Here, we define the Theta Function of q as the fourier
series expansion for the rq, or, in this case:

θq(z) :=
∞∑
n=0

rq(m)e2πimz

From here on out, we will seek to understand the properties and symmetries of this, essentially
generating function, and with that, derive information about these representation numbers.

1.1 Some Symmetries

The theta function has quite a few interesting symmetries that are worth mentioning. As being
a fourier series, it is invariant under the transformation z → z + 1, but this holds for any fourier
series. In particular, the theta function satisfies:

θq(z) =

∞∑
n=0

rq(m)e2πimz =
∑
~x∈Zn

e2πiq(~x)z

We can see this using Poisson Summation, which we recall here:

Theorem 1.1. (Poisson Summation) Suppose that f(~x) is a Schwartz function on Rn, or that
which decays faster than any polynomial as x→∞,then f satisfies the equality :∑

~x∈Zn

f(~x) =
∑
~x∈Zn

f̂(~x)

and the sums on both sides are convergent, where

f̂(~x) :=

∫
~t∈Rn

f(~t)e−2πi~x
~t

is the Fourier Transform of f .
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Now, one thing to notice is that since e−πx
2

is its own fourier transform, Poisson summation can
allow us to, with some rescaling, map a term to itself. Thus, consider the transformation z → −1

Nz
for some natural N . For example. consider the case where q(x) = x2, then take N = 4, to yield:

θx2(
−1

4z
) =
√
−2iz · θx2(z), θx2(z) = θx2(z + 1)

by Poisson Summation.

1.2 Modular Forms

Definition 1.2. We define a modular form of weight k, level N , Dirichlet character χ and multiplier
system ε to be a holomorphic function such that

f(
az + b

cz + d
) = ε(γ, k)χ(d)(cz + d)kf(z)

for all γ := [[a, b], [c, d]]. A Dirichlet Character χ is defined according to the following axioms: There
exists p such that χ(n + p) = χ(n) for all n, χ(xy) = χ(x)χ(y), and if gcd(n, k) = 1, χ(n) = 0,
and χ(n) 6= 0 if not. A holomorphic function is a complex function such that the function is
differentiable in a neighborhood around any point in its domain, and a multiplier system is simply
a factor that we associate with modular forms.

We notice that taking γ = [[1, 1], [0, 1]] gives us f(z + 1) = f(z), and thus with this periodicity,
and modular form f can be written as a Fourier Series:

f(z) =

∞∑
n=0

a(n)e2πinz

where the Fourier coefficients a(n) ∈ C. From these, we have another elementary corollary:

Corollary 1.3. θq(z) is a modular form of weight n/2 and level N , with character χ(g) =
(−1)[n/2] det(q)

g (with [k] being the floor), under the system ε(γ, k) := 1 when n is even, and ε(γ, k) :=

ε−1d ( cd) where εd =

{
1 d ≡ 1 (mod 4)

i d ≡ 3 (mod 4)
and ( cd) is the standard quadratic character.

Proof. This is evident since ε2d = (−1d ), so (ε−1d ( cd))n = (−1d )[n/2])·

{
ε−1d ( cd) if n is odd,

1 if n is even
and thus

we’re done.

In general, since our definitions are in the upper half plane H, if we look at the actions of Γ0(N)
on H under linear transformations of the form z → az+b

cz+d , for N = 1, Γ0(N) = SL2(Z), the special
linear subgroup of integer valued matrices, and so the known domain F is defined as:

F := {z ∈ H||z| ≥ 1 and |Re(z)| ≤ 1

2
}

However, our domain is not compact, but can be extended to a compact surface with the addition
of a point ∞ or i∞ which is essentially the limit point of the upper half-plane, which we can
imagine to be rendered at the point at infinity at the top of the y-axis. This point is called a cusp
of Γ0(1), and in general, Γ0(N) will have a finite index in SL2(Z), and thus its domain is the union
of translates of F , which can be made compact with the addition of finitely many cusps of Γ0(N).
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1.3 Eisenstein Series

Cusps are quite relevant in the theory of theta functions and modular forms. We can construct
a subspace of the modular forms of being the forms with vanish at the cusps, denoted as cusp forms.
We can also contruct another form EC(z) to associated with each specific cusp C which has value
1 at C and 0 at all other cusps. We call these functions and the space formed by these functions
associated to cusps as the Eisenstein Series. For the sake of brevity, it is impossible to show many
results for the scope of this paper and its intended audience, but we cite some results from the
range of study on these Series, as they are understood quite well. For example, they can actually
be understood in an explicit fashion, as is with the cusp C = i∞ in SL2(Z), the Eisenstein series of
weight k ∈ 2Z > 2, is given by :

Ek(z) :=
∑

(c,d)∈Z2

gcd(c,d)=1

1

(cz + d)k
= 1− 2k

B2k

∑
m≥1

σk−1(m)qm

where B2k is the 2kth Bernoulli number, σk−1 =
∑

0<d|m d
k−1 is the sum of the powers of the

divisors, and q = e2πiz. [1]

1.4 Facts about Modular Forms

Here, we state prior results on the topic of modular forms, such that they will help us in our
asymptotic statements. The space Mk of modular forms can be decomposed uniquely into a direct
sum of Eisenstein series and cusp forms.
Furthermore, any Eisenstein series has Fourier coefficients aE(m) which can be as large as cεm

k−1+ε

for any ε > 0 and some constant cε ∈ R > 0.
Any cusp form has fourier coefficients aC(m) which are no larger than cεm

k/2+ε for any ε > 0 and
some constant cε ∈ R > 0.

1.5 Asymptotic statements about the representation numbers

Armed with the previous section, we can write our theta function as:

θq(z) = E(z) + C(z)

where E(z) is an Eisenstein series and C(z) is a cusp form. Comparing fourier coefficients leads to:

rq(m) = aE(m) + aC(m)

By our bounds on aE , aC , we know that if the Eisenstein Fourier coefficients are nonzero, then rq
is nonzero as well, and so m is represented by q is m is large enough. [1]
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