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Abstract. Modular forms are complex analytic functions on the upper half plane that
satisfy a condition with respect to the modular group. They are important for their con-
nection to elliptic curves. In this paper, we define the modular group and modular forms,
and introduce Eisenstein series and cusp forms. We then define congruence subgroups and
explore the relationship between modular forms and elliptic curves over the complex num-
bers through their construction from the Weierstrass ℘-function to their classification using
the j-invariant.

1. Introduction

Modular forms were first studied in connection with elliptic curves and elliptic integrals
in the early 19th century, and they were later studied in the context of automorphic forms.
Later, the famous Modularity Theorem, which related elliptic curves and modular forms,
along with demands for development from other number theory encouraged further research
in modular forms. A weaker variant of the Modularity Theorem proven by Andrew Wiles
would be used to prove Fermat’s Last Theorem in 1995, and the complete Modularity The-
orem would be proven in 2001 by numerous mathematicians.

Modular forms can be thought of as having a multiplicative scaling behavior much like
homogeneous functions: there is a constant k such that for all ~x in our domain and scalars α in
a field, we have f(α~x) = αkf(~x). While scalar multiplication will not be the transformation
for modular forms, the defining identities of modular forms of weight k will look very similar.
The transformations that modular forms satisfy are the “modular group” i.e. SL2(Z) (or
more generally, a subgroup of SL2(Z) with finite index). So the functions that transform
under the modular group with a kind of scaling behavior are called modular forms.

Section 2 and 3 will define and provide important examples of modular forms, including
the Eisenstein series and cusp forms. In section 4, we will introduce congruence subgroups.
Section 5 discusses the relationship between complex elliptic curves and modular forms
through their construction from the Weierstrass ℘-function to their classification using the
j-invariant.

2. Modular forms

Before we define modular forms, we first introduce the modular group:

Definition 2.1. The modular group is the group of 2-by-2 matrices with integer entries and
determinant 1,

SL2(Z) =

{[
a b
c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The group operation is matrix multiplication. Each element in the modular group is a
linear fractional transformation on the upper half plane H = {τ ∈ C : Im(τ) > 0}. That is,
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Figure 1. A Fundamental Domain

for an element γ =

[
a b
c d

]
, we have the map[

a b
c d

]
(τ) =

aτ + b

cτ + d
, τ ∈ H .

We say that the modular group acts on the half plane H. These transformations have nat-
ural group properties: having an identity transformation, having inverse transformations,
and being associative. Any element in the modular group represents a transformation of the
half plane, and the product of two matrices in the modular group represents the transforma-
tion that is obtained by consecutively applying the transformations represented by the two
matrices.

Definition 2.2. For a group G acting on a space X, consider the images of a single point
under the group action; these form orbits of the group action. A fundamental domain is
a subset of X which contains exactly one point from this orbit.

Let

D =

{
z ∈ H : |z| ≥ 1,

−1

2
≥ Re(z) ≤ 1

2

}
.

This region is pictured in Figure 1. We claim the following:

Theorem 2.3. D is a fundamental domain for the modular group acting on the upper half
plane.

We first prove the following proposition, which will be helpful for the proof of Theorem
2.3:

Proposition 2.4. Let γ =

[
a b
c d

]
be an element of SL2(Z). Then, for some τ ∈ H, we have

Im(γτ) =
Im(τ)

|cτ + d|2
.
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Proof. By the definition of the group action of SL2(Z), we have

Im(γz) = Im

(
aτ + b

cτ + d

)
Multiplying numerator and denominator by cτ + d to rationalize this quantity, this is equal
to

Im

(
(aτ + b)(cτ + d)

(cτ + d)(cτ + d)

)
=

Im(aτ + b)(cτ + d)

|cτ + d|2

Let τ = x+ yi. Since ad− bc = 1, the imaginary part of (aτ + b)(cτ + d) is

Im(ax+ ayi+ b)(cx+ d− cyi) = −acxy + acxy + ady − bcy = (ad− bc)y = y,

so our expression simplifies to
Im(τ)

|cτ + d|2
as desired. �

We now prove Theorem 2.3 with a proof from [BD16].

Proof of Theorem 2.3. Let z be a point in H. We show that we can choose γ ∈ SL2(Z) such
that

|γz| ≥ 1,
−1

2
≥ Re(γz) ≤ 1

2
.

Define the two matrices S and T as

S =

[
1 1
0 1

]
, T =

[
0 −1
1 0

]
Note that the transformations that S and T correspond to are

S(τ) = τ + 1, T (τ) = −1

τ

By Proposition 2.4, for some γ =

[
a b
c d

]
∈ SL2(Z), we have Im(γz) = Im(z)

|cz+d|2 . Since c

and d are integers, the quantity |cz + d|2 has a minimum, which then maximizes the value
of Im(γz).

Let γ correspond to this minimum, and multiply γ by powers of S such that γz satisfies
−1
2
≥ Re(γz) ≤ 1

2
. Note that this will not change the value of Im z, since the transformation

corresponding to S only changes Re(z).
We now show that Im γz ≥ 1. Assume for contradiction that Im γz < 1; then, by Propo-

sition 2.4, ImT (γz) = Im(γz)
|γz|2 > Im(γz). Recall that γ was constructed to maximize Im(γz),

and we just showed that T (γz) has larger imaginary part. This is a contradiction, and we
conclude that Im(γz) ≥ 1.

We have now shown that Im(γz) ≥ 1 and −1
2
≥ Re(γz) ≤ 1

2
, and it remains to show that

no two points in the interior of D are SL2(Z)-equivalent. Suppose that two points z1 and

z2 satisfy z2 = γz1, where γ =

[
a b
c d

]
∈ SL2(Z); then, we show that they must lie on the

boundary of D.
Without loss of generality, assume that Im(z2) ≥ Im(z1). Then, by Proposition 2.4, we

know that |cz1 + d|2 = (cRe(z1) + d)2 + (c Im(z1))
2 ≤ 1. Since z1 lies in D, and since c and d
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are integers, we have the following four cases (Note that it is very helpful to look at Figure
1 to analyze these cases):

(1) c = 0, d = ±1. This means that either γ or −γ is a translation, so either z1 and z2
lie on the boundary lines Re(z) = ±1

2
, or ±γ is the identity map.

(2) c = ±1, d = 0. This means that either γ = ±T and z1 and z2 lie on the portion of
the unit circle that is part of the boundary of D, or γ = ±S±1T , and z1 and z2 are
the two roots of unity.

(3) c = d = ±1; then, z1 = ρ.
(4) c = −d = ±1; then, z1 = ρ+ 1.

Thus, we have shown that every point in H is equivalent under the action of SL2(Z) to a
point in D, and that no two points in the interior of D are equivalent, so we are done. �

An important consequence of Theorem 2.3 is the following:

Theorem 2.5. The modular group SL2(Z) is generated by the two matrices

S =

[
1 1
0 1

]
, T =

[
0 −1
1 0

]
.

Proof. Let Γ′ be the subgroup of SL2(Z) generated by S and T , let g be an element of
SL2(Z), and let z ∈ H. Then, by Theorem 2.3, there exists some γ ∈ SL2(Z) such that
γ(gz) ∈ D. But then, since no two points in the interior are equivalent, γg = ±I, where I
is the identity matrix. Thus, since γ can be written as a product of S and T , g can as well,
and this concludes the proof. �

Before we define weakly modular functions, we will first give some background on complex
analysis:

Definition 2.6. Let f(z) be a complex-valued function of a complex variable z. Then, f is
holomorphic at a point z ∈ C if it is differentiable in a neighborhood of z.

Example. Polynomial functions are always holomorphic on C.

Example. Some other examples of holomorphic functions are the trigonometric functions and
the complex exponential function.

The term ”holomorphic” is often used interchangeably with ”analytic”, which means that
a function has a convergent power series for a neighborhood of a point. These notions turn
out to be equivalent; we refer the reader to [Sha03] for a more in-depth treatment of power
series.

We can also define functions that are holomorphic on all of a subset of C, except for a few
isolated points. These functions are called meromorphic functions.

Definition 2.7. A function f is meromorphic if it can be written as the ratio of two
holomorphic functions.

Example. All rational functions are meromorphic on the complex plane

We now define weakly modular functions:

Definition 2.8. Let k be an integer. A meromorphic function f : H → C is weakly

modular of weight k if for all γ =

[
a b
c d

]
∈ SL2(Z) and all τ ∈ H,

f(γ(τ)) = (cτ + d)kf(τ)
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Since SL2(Z) is generated by the matrices S =

[
1 1
0 1

]
, T =

[
0 −1
1 0

]
, which correspond to

the automorphisms τ 7→ τ + 1 and τ 7→ − 1
τ
, this property is equivalent to the two functional

equations

f(τ + 1) = f(τ), f

(
−1

τ

)
= τ kf(τ).

It is also important to note that modular forms are sometimes defined as having weight 2k
instead of weight k. This is because of the following:

Proposition 2.9. If k is odd, then the only function that can satisfy this condition is the
zero function.

Proof. Suppose k is odd. Consider the matrix

[
−1 0
0 −1

]
, which corresponds to the trans-

formation τ 7→ τ . Then, f must satisfy f(τ) = (−1)kf(τ), so since (−1)k = −1, f(τ) must
be identically 0. �

One of the conditions that a modular form satisfies is being holomorphic at ∞, which we
define below:

Definition 2.10. A function f : H → C is holomorphic at ∞ if f(τ) is bounded as
Im(τ)→∞.

We can now define modular forms of weight k:

Definition 2.11. A function f : H → C is a modular form of weight k if

(1) f is holomorphic on H,
(2) f is holomorphic at ∞,
(3) f is weakly modular of weight k.

The set of modular forms of weight k forms a ring, and it is denoted Mk(SL2(Z)). Fur-
thermore, we can add and multiply modular forms:

Proposition 2.12. We have the following properties:

(1) If f(τ) and g(τ) are both modular forms of weight k, then the sum f + g is also a
modular form of weight k.

(2) If f(τ) and g(τ) are modular forms of weight l and m, respectively, then the product
(fg)(τ) is a modular form of weight l +m.

Proof. (1) Suppose f(τ) and g(τ) are both modular forms of weight k. Then, clearly the
sum f + g is holomorphic on H and at ∞. To show weak modularity, note that for

any element γ =

[
a b
c d

]
of SL2(Z),

(f + g)(τ) = (cτ + d)kf(τ) + (cτ + d)kg(τ) = (cτ + d)k((f + g)(τ)).

so we conclude that f + g is a modular form of weight k.
(2) Suppose f(τ) and g(τ) are modular forms of weight l and m. Then, clearly the

product fg is holomorphic onH and at∞. Additionally, for some element γ =

[
a b
c d

]
of SL2(Z),

fg(γ(τ)) =
(

(cτ + d)lf(τ)
) (

(cτ + d)mg(τ)
)

= (cτ + d)l+mfg(τ)
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so we conclude that fg is a modular form of weight l +m.
�

Thus, the sum

M(SL2(Z)) =
⊕
k∈Z

Mk(SL2(Z)).

has an additional structure due to this property. This type of ring is called a graded ring.

Notice that due a consequence of being weakly modular of weight k, modular forms are
1-periodic, which means that they have a Fourier series expansion

∞∑
n=0

anq
n

where q = e2πiτ .

3. Eisenstein Series and Cusp Forms

Eisenstein series can be thought of as an analog of the Riemann zeta function in two
dimensional lattices, and it turns out that they are modular forms. They are defined as
follows:

Definition 3.1. Let k be a positive even integer. The Eisenstein series of weight k,
Gk(τ) : H → C, is given by the series

Gk(τ) =
∑

(c,d)∈Z2 \{(0,0)}

1

(cτ + d)k
.

Proposition 3.2. Gk(τ) is a modular form of weight k.

Proof. To see that the Eisenstein series is holomorphic on H, take partial sums, and no-
tice that those functions are holomorphic. Then, taking the limit as the number of terms
approaches infinity yields a holomorphic function as well.

To prove weak modularity, we prove that Gk(τ) satisfies

Gk(τ + 1) = Gk(τ), Gk

(
−1

τ

)
= τ kGk(τ).

For the first property, we have

Gk(τ + 1) =
∑

(c,d)∈Z2 \{(0,0)}

1

(c(τ + 1) + d)k
=

∑
(c,d)∈Z2 \{(0,0)}

1

(cτ + c+ d)k
.

Note that as c and d run over the integers, c and c+ d do as well, so this is equal to Gk(τ),
as desired.

For the second property,

Gk

(
−1

τ

)
=

∑
(c,d)∈Z2 \{(0,0)}

1(
c
(
− 1
τ

)
+ d
)k

=
∑

(c,d)∈Z2 \{(0,0)}

1(
−c+dτ
τ

)k
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= τ k
∑

(c,d)∈Z2 \{(0,0)}

1

(dτ − c)k
.

Since d and −c run over the integers as c and d do, this is equal to τ kGk(τ) as desired. �

Proposition 3.3. For an even integer k > 2, the Fourier series expansion of the Eisenstein
series is

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where σk−1(n) =
∑

m|nm
k−1.

Proof. We present the following proof from [DS05].
The following can be shown with standard complex analysis techniques, but we will omit

it because we are not assuming knowledge of complex analysis. This is the cotangent sum:

π cot πτ =
1

τ
+
∞∑
n=1

[
1

τ + n
+

1

τ − n

]
= πi− 2πi

∞∑
m=0

qm

where q = e2πiτ . Notice that differentiating the last two parts of the identity yields

− 1

τ 2
+
∞∑
n=1

−1

(τ + n)2
+

−1

(τ − n)2
= (−2πi)(2πi)

∞∑
m=0

mqm

Differentiating again,

1

τ 3
+
∞∑
n=1

2

(τ + n)3)
+

2

(τ + n)3)
= −(2πi)3

∞∑
m=0

m2qm

We repeat this process to differentiate k − 1 times, so that the exponent of the fractions on
the left hand side is k. This results in the following identity:∑

n∈Z

− (k − 1)!

(τ + n)k
= −(2πi)k

∞∑
m=0

mk−1qm

Rearranging, we get that ∑
n∈Z

1

(τ + n)k
=

(2πi)k

(k − 1)!

∞∑
m=0

mk−1qm

Now note that for even integers k > 2, we can write Gk(τ) as∑
(c,d)∈Z \{(0,0)}

1

(cτ + d)k
=
∑
d6=0

1

dk
+ 2

∞∑
c=1

∑
d∈Z

1

(cτ + d)k

where the first sum is the case c = 0, and the second sum is multiplied by a factor of 2
because it covers the cases where c is positive or negative.

The quantity
∑

d 6=0
1
dk

is equal to 2ζ(k) because k is even, and for the double summation,
we use the identity we derived above from the cotangent sum:

= 2ζ(k) + 2
∞∑
c=1

(
(2πi)k

(k − 1)!

∞∑
m=0

mk−1qcm

)
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We change the indexing of the double sums by summing n = cm over integers and then
summing over divisors d = m of n:

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

∑
d|n

dk−1qn

Let σk−1(n) denote
∑

d|n d
k−1. Then, we have

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

as desired. �

We can divide Gk(τ) by 2ζ(k) to make the constant term 1; this is called the normalized
Eisenstein series and will make appearances in the Elliptic Curve section. Specifically, we
have

Ek(τ) =
1

2ζ(k)
Gk(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where Bk are the Bernoulli numbers, a sequence of rational numbers that commonly appears
in number theory.

Definition 3.4. A cusp form of weight k is a modular form with a0 = 0 in its Fourier
expansion.

Definition 3.5. Define the functions g2(τ) and g3(τ) as

g2(τ) = 60G4(τ), g3(τ) = 140G6(τ).

Then, define the modular discriminant ∆ : H → C as ∆(τ) = (g2(τ))3 − 27(g3(τ))2.

Proposition 3.6. ∆ is a cusp form of weight 12.

Proof. We can easily see that ∆ is a modular form of weight 12: recall that a product of
modular forms of weight k1 and k2 is a modular form of weight k1k2, so g32(τ) and g23(τ) are
both modular forms of weight 12, and thus a linear combination of them is also a modular
form of weight 12.

It remains to show that ∆ is a cusp form. Proposition 3.3 tells us the q-expansion of
G4(τ) and G6(τ), so all we need to do is compute the constant terms and show that they
are equal to 0. The constant term of g32(τ) is (60(2ζ(4)))3, and the constant term of g23(τ)

is (140(2ζ(6))2. We know ζ(4) = π4

90
and ζ(6) = π6

945
, so it can be verified easily that the

constant coefficient of ∆ is 0. �

4. Congruence Subgroups

While our current definition of a modular form gives rise to many interesting modular
forms, extending our definition so that a function only has to satisfy the weakly modular
property for a subgroup of SL2(Z) rather than the entire group opens up the possibility for
many more. As the name suggests, a congruence subgroup is a subgroup of SL2(Z) created
by imposing congruence conditions on the entries of the matrix:
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Definition 4.1. Let N be a positive integer. The principal congruence subgroup of
level N is the group

Γ(N) =

{[
a b
c d

]
∈ SL

2
(Z) :

[
a b
c d

]
≡
[
1 0
0 1

]
(mod N)

}
.

Then, we can define a general congruence subgroup as follows:

Definition 4.2. A subgroup Γ of SL2(Z) is a congruence subgroup if there exists an
integer N such that Γ(N) ⊂ Γ.

We now define modular forms with respect to a congruence subgroup:

Definition 4.3. Let Γ be a congruence subgroup, and for γ =

[
a b
c d

]
∈ Γ, let

f [γ]k = (cτ + d)−kf(γ(τ)).

Then f : H → C is a modular form with respect to Γ if

(1) f is holomorphic on H,
(2) f [γ]k is holomorphic at ∞ for all γ ∈ Γ,
(3) f [γ]k = f(τ) for all τ ∈ C, γ ∈ Γ.

There is a certain important type of congruence subgroup called Γ0(N) that we will also
want to introduce:

Definition 4.4. The subgroup Γ0(N) is defined by

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Remark 4.5. Modular forms for this subgroup can be used to prove that any integer can be
written as a sum of four integer squares (which we will omit here).

5. Elliptic Curves

One of the main reasons we care about modular forms is for their relationship to elliptic
curves over the complex numbers. In this section, we discuss and explore this connection.

While we have previously defined the modular forms over Z2−{(0, 0)}, we can consider
them as a function over lattices L in C generated by complex numbers ω1, ω2 with ω1/ω2 ∈ H.
We can also denote lattices by their generators, L = L(ω1, ω2). The Eisenstein series can be
written in terms of lattices:

(1) G2k(L) =
∑

ω∈L−{(0,0)}

1

ω2k
.

We shall abbreviate G2k(ω1, ω2) = G2k(L(ω1, ω2)). Equation 1 immediately tells us that for
any λ ∈ H, G2k(λω1, λω2) = λ−2kG2k(ω1, ω2). In particular, we can choose λ = ω−12 so that
G2k(ω1/ω2, 1) = ω2k

2 G2k(ω1, ω2). We can rewrite this as

(2) G2k(ω1, ω2) = ω−2k2 G2k

(
ω1

ω2

, 1

)
.
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In general, we can find another basis by setting (ω′1, ω
′
2) = (aω1 + bω2, cω1 + dω2) for integers

a, b, c, d with ad− bc = ±1. Choosing a basis so that Im(ω′1/ω
′
2) > 0 guarantees ad− bc = 1.

The Eisenstein series is independent of the basis. Thus, we also have

(3) G2k(ω1, ω2) = G2k(aω1 + bω2, cω1 + dω2) = (cω1 + dω2)
−2kG2k

(
aω1 + bω2

cω1 + dω2

, 1

)
.

Combining (2) and (3) gives us

(cω1 + dω2)
−2kG2k

(
aω1 + bω2

cω1 + dω2

, 1

)
= ω−2k2 G2k

(
ω1

ω2

, 1

)
G2k

(
aω1/ω2 + b

cω1/ω2 + d
, 1

)
= (cω1/ω2 + d)2kG2k

(
ω1

ω2

, 1

)
.

If we set τ = ω1/ω2, by the abuse of notation G2k(τ, 1) = G2k(τ), we have

G2k

(
aτ + b

cτ + d

)
= (cτ + d)2kG2k(τ).

Thus, we have proved: (1) every lattice with two generators in C can be written in the form
λL(1, τ); (2) the weak modularity condition holds for the lattice definition of modular forms.

The first fact allowed us to convert the lattice definition into a form with τ and γ =

[
a b
c d

]
,

which shows that the lattice definition can be reduced to our original definition for modular
forms.

Definition 5.1 (Weierstrass elliptic function). For any lattice L in the complex plane, define
the Weierstrass elliptic function to be

℘(z) =
1

z2
+

∑
ω∈L−{(0,0)}

(
1

(z + ω)2
− 1

ω2

)
.

Remark 5.2. In general, an elliptic function is a meromorphic function that is doubly-periodic
on the complex plane.

Remark 5.3. The ℘-function is not a modular form since it has poles on L.

Where did the equation for Definition 5.1 come from? If we were to naively construct a
doubly-periodic function, we might want to imitate the form of Eisenstein series and define

f(z) =
∑
ω∈L

1

(z + ω)3

as this converges absolutely. However, it turns out that if we are careful to make sure that
the resulting series converges, we can integrate −2f(z) term by term to obtain ℘(z), which is
of order 2. Integrating −2

(z+ω)3
with respect to z gives 1

(z+ω)2
+C(ω) where C(ω) is a constant

that only depends on ω. We set C(ω) = 1
ω2 so that the series converges. While we do not

prove it here, there are no elliptic functions with order 1, so in a sense, ℘(z) is the most
fundamental type of elliptic function. In fact, we have the following result, which we will
state without proof:

Proposition 5.4. All elliptic functions are expressible as a rational function in ℘(z) and
℘′(z).
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We wish to show that ℘(z) is doubly-periodic. By definition, we have ℘′(z) = −2f(z),
which is doubly-periodic. As C−L is connected, we can integrate to get that for any ω ∈ L,
℘(z + ω) = ℘(z) + D(ω) where D(ω) is a constant that depends only on ω. This is close
to being doubly periodic. The final observation we need is to see that ℘(z) is even because
℘(z) = ℘(−z). Then we can choose our basis ω1, ω2 so that ωi/2 6∈ L for i = 1, 2. Now, we
have

℘(ωi/2) = ℘(−ωi/2) +D(ωi) = ℘(ωi/2) +D(ωi),

so D(ωi) = 0 for i = 1, 2. Then ℘(z + ωi) = ℘(z) for i = 1, 2 implies that ℘(z + ω) = ℘(z)
for any ω ∈ L. Thus, ℘(z) is doubly-periodic as desired.

The following proposition will allow us to connect the ℘-function to complex elliptic curves:

Proposition 5.5. The Weierstrass ℘-function satisfies the differential relation

℘′(z)2 = 4℘3(z)− g2(L)℘(z)− g3(L).

Proof. We will only sketch an outline as the proof requires more computation. We look at the
Taylor expansion of the difference of the two sides, F (z) = ℘′(z)2−4℘3(z)+g2(L)℘(z)+g3(L),
and see that it has no pole at z = 0, implying that F (z) has no poles on L. As F (z) is a
combination of elliptic functions, it must be an elliptic function with order 0. But this would
imply that F (z) is constant as there are no non-constant elliptic functions with order less
than 2. We can check that F (z) = 0 by seeing that F (0) = 0. �

Remark 5.6. The Weierstrass ℘-function is the inverse of the elliptic integral

u =

∫ ∞
y

ds√
4s3 − g2(L)s− g3(L)

so that y = ℘(u). This can be shown by differentiating both sides then using the differential
relation (5).

Now we introduce elliptic curves.

Definition 5.7 (Complex Projective Plane). The complex projective plane is the set of
ordered triplets (a, b, c) ∈ C3 under the equivalence relation (a, b, c) ∼ (a′, b′, c′) if there
exists a nonzero complex number λ such that (a′, b′, c′) = (λa, λb, λc).

Definition 5.8 (Elliptic Curve). An elliptic curve over a field k is a non-singular, complete
curve of genus 1 with a distinguished point. When the characteristic of the field is not 2 or
3, the curve can be seen as the locus of the equation

Y 2Z = X3 + aXZ2 + bZ3

where a and b is in k and 4a3 + 27b2 6= 0. This equation is called the Weierstrass equation.

The condition on a and b will prevent double roots, guaranteeing that E is of genus 1 and
thus topologically a torus. Intuitively, we have a point at infinity, (0, 1, 0). All other points
have nonzero Z-value, so we can just think about the equation as being in two variables,
X/Z and Y/Z.

We have the following embedding (map) from the complex torus C /L to the complex
projective plane:

z 7→

{
(℘(z) : ℘′(z) : 1), z 6= 0

(0 : 1 : 0)
,
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which gives us the form for the elliptic curve

E(L) : Y 2Z = 4X3 − g2(L)XZ2 − g3(L)Z3.

If we use a different lattice L′ = λL, then we have g2(L
′) = λ−4g2(L) and g3(L

′) = λ−6g3(L),
which can be absorbed into Z by substituting Z ′ = λ−2Z. So the elliptic curve that we get
from a lattice is unique up to homothety of the lattice (two lattices are homothetic if one
can be turned and rescaled into the other).

Definition 5.9. The j-invariant is a modular form of weight zero:

j(z) =
1728g2(z)3

∆(z)
= 1728

E4(z)3

E4(z)3 − E6(z)2
.

We claim that A = g2(L) and B = g3(L) for some appropriate lattice L. In the accompany-
ing proof, we use the fact that any lattice in C with two generators, L = {mω1 +nω2} where
z = ω1/ω2 ∈ H, can be expressed as L = λLz = {mλz + nλ} where λ = ω2. Essentially, L
is a complex multiple of Lz.

Proposition 5.10. For any A,B ∈ C such that A3 6= 27b2 there exists L = λLz such that

g2(L) = A, g3(L) = B.

Proof. By definition of g2 and g3, we immediately get that g2(λLz) = λ−4g2(Lz) and similarly
g3(λLz) = λ−6g3(Lz). We can re-express our desired result in terms of the normalized
Eisenstein series: there exist λ and z such that

E4(z) =
3

4π4
g2(z) =

3

4π4
λ4g2(L) =

3

4π4
λ4A

and similarly

E6(z) =
27

8π6
g3(z) =

27

8π6
λ6g3(L) =

27

8π6
λ6B.

Then the condition A3 6= 27B2 becomes a3 6= b2, which implies b2

a3
6= 1. By the definition of

the j-invariant, we have
E2

6

E3
4

= 1− 1728
j

. A property of j(z) is that it takes on all finite values

on H. Then E6(z)2

E4(z)3
can be any value we want except 1; in particular, for any a, b with b2

a3
6= 1

we can have E6(z)2

E4(z)3
= b2

a3
. Then choose λ so that E4(z) = λ4a. This implies

E6(z)2 =
b2E4(z)3

a3
= λ12b2,

or

E6(z) = ±λ6b.
If we have a positive sign, then our λ and z satisfy our desired conditions. If we have a
negative sign, then we can replace λ by iλ; this changes the sign for E6(z) but not for E4(z).
Thus we are done. �

The above proposition directly proves the following proposition.

Proposition 5.11. Every elliptic curve E over C is isomorphic to E(L) for some lattice L.

We also have (without proof):

Proposition 5.12. Lattices L1, L2 are homothetic if and only if j(L1) = j(L2).
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Figure 2. Classifying Complex Elliptic Curves using the j-invariant and the
modular group

Thus, we can classify elliptic curves up to isomorphism by their j-invariants, which can be
found by looking at the g2 and g3-invariants of the curves. We can further realize that two
lattices being homothetic means that there is an invertible transformation on the complex
plane to itself. Each lattice can be read off as τ = ω1/ω2 ∈ H. Thus, we can see that the
lattices under homothety is isomorphic to H under equivalence by action of SL2(Z) (more
precise, to the orbit of H by the group action SL2(Z)). Figure 2. from [Mil06] shows this
chain of bijections.

The sets are:

(1) {Elliptic curves/C}/ ≈= the set of elliptic curves under some equivalence relation
we will not describe here,

(2) L/C× = the set of lattices over the complex plane,
(3) SL2(Z) \ H = the orbits of H under the group action SL2(Z),
(4) C = the complex plane.

The bijections are:

(1) Every elliptic curve can be associated with a lattice; every equivalence of elliptic
curves is associated with exactly one lattice up to homothety,

(2) Every lattice is associated with a τ = ω1/ω2, and the homothety on lattices mirrors
the action by SL2(Z) on the half plane,

(3) The j-invariant maps the half-plane surjectively onto C (which we haven’t proved).
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