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Abstract. The j-function is an important function relating to many mathematical con-
cepts such as elliptic curves and abstract algebra. I will be referencing “Ramanujan and
the modular j-invariant”[BC99], “Planar trees, free nonassociative algebras, invariants,

and elliptic integrals”[DH07], “The j-Function and the Monster”[Sch10], “Is eπ
√

163

odd
or even?”[B.S], “A Book of Abstract Algebra”[Pin10]. Throughout the paper, I will para-
phrase/cite definitions and theorems from the latter articles. We will take a close look at
some interesting properties of the j-function, such as its use in Monster groups, various uses

in abstract algebra, and in showing that eπ
√
163 is very close to an integer.

1. Introduction to the j-function, Monster groups, and abstract algebra

We begin by defining the j-function:

Definition 1.1. The j-function is a function defined on all τ ∈ C (τ can be thought of as
an isomorphism class of an elliptic curve, as we’ll see later), and we have

j(τ) = 123 · g2(τ))3

g2(τ)3 − 27g3(τ)2
,

where

g2(τ) = 60
∑
m,n∈Z

(m,n)6=(0,0)

(m+ nτ)−4

and

g3(τ) = 140
∑
m,n∈Z

(m,n)6=(0,0)

(m+ nτ)−6 .

The modular discriminant is defined as

∆(τ) = g2(τ)3 − 27g3(τ)2

in this context.

The modular discriminant is an infinite sum over certain lattice. We will the modular
discriminant more closely later on in this paper. One other way we can write the j-function
is

j(τ) =
1

e2πiτ
+ 744 + 196884q + 21493760q2 + 864299970q3 + . . . :=

1

e2πiτ
+
∞∑
n=0

c(n)qn,
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where q = e2πiτ [Sch10]. This is often referred to as the q-expansion of j(τ). Now that we
have the basic definition of the j-function, let’s go through a bunch of preliminary definitions,
lemma, and a corollary1:

Definition 1.2. A simple group is a nontrivial group with only the trivial group and the
group itself as its normal subgroups. There are three infinite classes: cyclic groups of prime
order, alternating groups with degree n ≥ 5, and groups of Lie type. However, the other 26
groups are called sporadic groups.

The Monster group, which we will define next, has 19 of the other sporadic groups as
either subquotients or subgroups.

Definition 1.3. The Monster group, which we will denote M, is the largest simple sporadic
group; it has order

246 × 320 × 59 × 76 × 112 × 133 × 17× 19× 23× 29× 31× 41× 47× 59× 71

= 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

This is approximately 8× 1053.

The Monster group is one of the most (if not the most) important groups with a con-
nection to the j-function. As we will see later, the j-function is connected to a very special
representation of the Monster group, which is called the Monster vertex algebra. Both the
Monster group and the Monster vertex algebra are related to the following:

Definition 1.4. We refer to the strange relation between the Monster group and the j-
function as monstrous moonshine.

We have now seen the basics of Monster groups. Let’s turn our attention now to a bit of
abstract algebra, which we will be seeing frequently in the coming sections.

Definition 1.5. The multiplicative group of all integer 2× 2 matrices with determinant 1,{(
a b
c d

)
: a, b, c, d ∈ Z, det

(
a b
c d

)
= 1

}
,

has a number of applications to the j-function. We denote this group SL2(Z). [Sch10]

The main thing we will use this multiplicative group for is in theorems and their proofs
involving modular functions, which we will look at in the next section. The following lemma
is somewhat unrelated to the previous, but relates to meromorphic functions (see footnote
3 on the next page).

Lemma 1.6. Let S := P1(C) be the Riemann sphere2. If f : S → C is meromorphic (see
footnote 3 on the next page), then f(z) is a rational function.

Keep some of these theorems etc. in the back of your mind, we’ll use them later on. Now
that we have the basics, we can look at some properties of the j-function in relation to other
modular functions.

1I assume some basic knowledge of abstract algebra/groups, but we will see some less trivial definitions
throughout the paper.

2Riemann sphere, i.e., the complex plane with an added point at infinity.
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2. The modular j-function relating to other modular functions

Let’s begin by defining what it means for a function to be modular.

Definition 2.1. We call a function f : H → C modular iff it satisfies these properties:

1. f is meromorphic3 in the open upper half-plane H.

2. For each matrix

(
a b
c d

)
(where a, b, c, d ∈ Z) in the modular group SL2(Z), we have

f

(
az + b

cz + d

)
= f(z).

3. The Fourier series for f is of the form

f(z) =
∞∑

n=−m

ane
2iπnz.

This is because the second condition implies periodicity for f , so it is also implied that f
has a Fourier series.

One thing that should be fairly obvious by now is that the j-function is a modular function.
Naturally, we might wonder about modular functions with certain q-expansions.

Corollary 2.2. If a modular function has a q-expansion with no negative powers of q (holo-
morphic at ∞), then it is constant.

Let’s look at the following theorems relating to modular functions and the j-function.

Remark 2.3. Notice that the following two theorems go hand-in-hand–some proofs of the
first rely on the second, and some proofs of the second rely on the first. We will prove them
in the order below.

Theorem 2.4. Every modular function (for SL2(Z)) is a rational function in j. [Sch10]

Proof. The j-function defines the isomorphism from K(1) to S, where K(1) is a modular
curve. Let us define g : K(1) → C as a modular function for SL2(Z). Then we have
f = g ◦ j−1 : S → C. The latter is meromorphic. From Lemma 1.8, f must be rational, so
the theorem is true. �

Lemma 2.5. Every holomorphic modular function for SL2(Z) is a polynomial in j(τ).

Proof. Let f(τ) be a holomorphic modular function for SL2(Z). We would like to show that
this is a polynomial in j(τ). Because it is modular and meromorphic in the open upper
half-plane H (as required in definition 1.6), we can write its q-expansion:

f(τ) =
∞∑

n=−m

anq
n.

Let us introduce another polynomial g where the powers of the terms of f(τ)− g(j(τ)) are
nonnegative. The latter difference is constant, so we have f(τ) = (a + bi) + g(j(τ)), and
f(τ) is a polynomial in j(τ). �

3A function on an open subset D of the complex plane is called meromorphic if it is a function that is
holomorphic (differentiable/complex differentiable) on all of D, with the exception of a set of isolated points.
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There are more interesting things about the j-function and modular functions in several
papers, including Scherer’s, but for now that’s all we’ll look at.

3. Showing that eπ
√
163 is nearly an integer

One interesting way we can use the j-function is to show that eπ
√
163 is nearly an integer.

More precisely, this number is within nearly 10−12 of an integer. We often refer to eπ
√
163

as Ramanujan’s constant, or we can use the following notation, which we will be seeing
frequently.

Definition 3.1. We often denote ex (f(x) = ex is the exponential function) as exp x.

Although we utilize the j-function in the coming proof, we must first look at the following
definition.

Definition 3.2. A Heegner number is a square-free positive integer d where the imaginary
quadratic field4 Q[

√
−d] has class number5 1. There are only 9 Heegner numbers, namely,

1, 2, 3, 7, 11, 19, 43, 67, 163.

It is worth noting that the Heegner numbers are useful in proving that a wide array of
almost-integers are indeed almost-integers. Now we formally present the theorem and proof:

Theorem 3.3. Ramanujan’s constant, eπ
√
163, is an almost-integer.

Proof. Let us look at the q-expansion of j(τ):

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + . . . .

Let τ = 1+
√
−163
2

. Then we have q = − exp(−π
√
163); in terms of the first term of the q-

expansion, we have 1
q

= − exp(π
√
163). So we have j(1+

√
−163
2

) = (−640320)3. Let’s now

write −eπ
√
163

instead of − exp(−π
√
163), just to see what we have:

j

(
1 +
√
−163

2

)
= −eπ

√
163

+ 744 +O(e−π
√
163

),

where O represents the orthogonal group6. Now, say we would like eπ
√
163 to be within some

positive value v of an integer (this number v is sometimes refered to as the error). The linear
term of v is − 196884

eπ
√

163
. We have

eπ
√
163 − v = 196884e−π

√
163 + 21493760e−2π

√
163 + . . . ,

and this is approximately 0. So v is approximately − −196884
6403203+744

= −0.00000000000075, and
this shows that Ramanujan’s constant is very close to an integer (about 262537412640768744,
so the constant is approximately 262537412640768744− 0.75× 10−12). �

4The quadratic field is an algebraic number field K of degree 2 over Q. We have that d → Q[
√
d] is a

bijection from the set of square-free integers to the set of quadratic fields. If d is negative, we call this an
imaginary quadratic field.

5The (ideal) class group of an algebraic number field K is the quotient group JK/PK (JK is the group of
fractional ideals of the ring of integers of K, and PK is the subgroup. The class number is the cardinality of
the ideal class group of its ring of integers.

6The orthogonal group is a group that is both algebraic and a Lie group (which we will discuss briefly).
The orthogonal group is the group of distance-preserving transformations of an n-dimensional Euclidean
space that preserve a fixed point.
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Now that we have been focusing on the latter theorem for a while, we’ll do something
different and look at the j-function as it relates to elliptic curves.

4. The j-function and elliptic curves

As we are used to by now, we begin this section with a bunch of definitions (although we
can’t find very many interesting facts other than these definitions):

Definition 4.1. An elliptic curve is an algebraic plane curve (i.e., zero set of two-variable
polynomial) given by the equation y2 = x3 + ax + b, with no cusps (points which move
backwards) or self-intersections. Elliptic curves are of genus 1 (meaning that they have 1
“hole”).

Elliptic curves are not to be confused with the actual curve of an ellipse; they are called
“elliptic” because they have been used in problems involving arc length of an ellipse. In the
following definition, we will learn an important term in abstract algebra, which also has a
relation to elliptic curves and j-functions, as we’ll see in the coming proposition.

Definition 4.2. An isomorphism is a map between two similar structures (and it is re-
versible). Isomorphic is the adjective describing this. An isomorphism class is a collection
of objects which are isomorphic to each other.

Remark 4.3. What exactly is an “object?” It depends, and the term is used widely among
many branches of mathematics. In the case of abstract algebra, however, it is likely that an
“object” is a group, ring, field, lattice, vector space, etc.

Proposition 4.4. The j-function is what specifies the isomorphism classes of elliptic curves.

One way of seeing that the above is true is noticing that τ in j(τ) represents the iso-
morphism class. It’s natural to wonder if j is actually defined for everywhere in H (upper
half-plane). It is, and this is because the modular discriminant (of the Weierstrass elliptic
functions), which was defined in the beginning of this paper, is nonzero. If we want to give
a better definition of ∆(τ), we must first introduce Weierstrass’s elliptic function:

Definition 4.5. Weierstrass’s elliptic function is an elliptic function with periods ω1 and
ω2 where

φ(z;ω1, ω2) =
1

z2
+

∑
mω1+nω2 6=0

{
1

(z +mω1 + nω2)2
− 1

(mω1 + nω2)2

}
.

This function can also be thought of as the inverse of an elliptic integral. Let

u =

∫ ∞
y

ds√
4s3 − g2s− g3

.

Then we have y = φ(u).

Now let’s go back to the definition of ∆(τ) in the first definition of the j-function.

Definition 4.6. Let us review what ∆(τ) is in the first definition of the j-function:

∆(τ) = g2(τ)3 − 27g3(τ)2.

This is called the modular discriminant, and it is defined to be the quotient by 16 of the
discriminant of the right side of the Weierstrass elliptic function written as an integral.
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5. Miscellaneous properties of the j-function

We’ll just glance at a few interesting properties of the j-function:

Property 5.1. The fact that j
(

1+
√
−163
2

)
= −6403203 was used to prove that

1

π
=

12

6403203/2

∞∑
k=0

(6k)!(163× 3344418k + 13591409

(3k)!(k!)3(−640320)3k
.

We’ll define some more abstract algebra terminology here (the following two definitions
are paraphrased from [Pin10]).

Definition 5.2. If K is the root field of polynomial f(x) in F [x], then the group of all the
automorphisms (isomorphisms from the object–in this case, the root field–to itself) of K
which fix (map to itself) F is called the Galois group of f(x). [Pin10]

The Galois group is one of the most famous groups in abstract algebra.

Definition 5.3. Let K be a subfield of some field F . Then F is called an extension field of
K. [Pin10]

Notice that we can have a Galois extension, essentially the combination of the previous
two definitions.

Definition 5.4. An abelian group is a group satisfying commutativity.

Now for the second and third properties:

Property 5.5. The extension field Q[j(τ), τ ]/Q(τ) has an abelian Galois group and is itself
abelian.

Property 5.6. If τ belongs to an imaginary quadratic field with a positive imaginary part,
then j(τ) is the root of a monic polynomial with integer coefficients. That’s a mouthful, but
the latter is analogous to saying that j(τ) is an algebraic integer.

Now we turn to one of the most fascinating properties of the j-function–its relation to the
Monster group.

6. The j-function and monstrous moonshine

Definition 6.1. A graded ring is a ring where the additive group is a direct sum of abelian
groups Ga such that GaGb ⊆ Ga+b. An algebra (for now, think algebraic structure) A over
a ring R is called a graded algebra if it is a graded ring.

How, exactly, is the j-function related to monstrous moonshine?

Theorem 6.2. Assume we have an infinite-dimension graded algebra of the Monster group
(as defined earlier). The coefficients of the positive powers of q in the q-expansion of j(τ)
are the dimensions of the graded part of the graded algebra.

It turns out that this isn’t the only beautiful relation between the j-function and the
monster group. As always, we need preliminary definitions.

Definition 6.3. Abstractly speaking, the Jabobi identity tells us how the order of evaluation
(layout of parentheses) will work for a given operation.
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Definition 6.4. A Lie algebra is a collection of vectors (vector space) g having a non-
associative operation with an alternating bilinear map satisfying the Jacobi identity.

The following two definitions are closely related due to the Kac-Moody algebra.

Definition 6.5. A Kac-Moody algebra is a (infinite-dimensional) Lie algebra which is defined
by generators and certain relations (using a generalized Cartan matrix, but that is not so
important here). A generalized Kac-Moody algebra is also a Lie algebra, and the main
difference is that, unlike the regular Kac-Moody algebra, it can have simple imaginary roots.

Now that we know what a Kac-Moody algebra is, we can define the Monster Lie algebra,
perhaps one of the most complex and important definitions bringing together the j-function
and the monster group.

Definition 6.6. The Monster Lie algebra is an infinite-dimensional generalized Kac–Moody
algebra. The vector (1,−1) gives this algebra one real simple root. The Monster vertex
algebra is loosely defined as an algebra related to the monster group, and it was used to
prove the connection between the j-function and the monster group.

We will end with an interesting corollary.

Corollary 6.7. The coefficient c of qn in the q-expansion of j(τ) is the cth-dimension of the
grade-n part of the Monster vertex algebra.
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