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Abstract

The Jacobi Triple Product is the elegant identity first discovered and published
by Carolus Gustavus Jacobi in his Fundamenta Nova Theoriae Functionum Ellip-
ticarum alongside his work on certain elliptic functions. Useful in many areas of
number theory, the Jacobi Triple Product has applications in the Theory of Integer
Partitions, emerges as special cases in both the Weyl Denominator Formula and the
Macdonald Identities, and also provides a generalization of the Euler Pentagonal
Number Theorem. The proof provided in this paper is constructed by introducing
some generating functions, the properties of which enable the algebraic manipula-
tion that produces the identity.

1 A Few Preliminaries

We will begin our derivation of the Jacobi Triple Product formula by studying the be-
haviour of some generating functions. First, we shall define our two generating functions,
and then prove that they satisfy some interesting functional equations.

Definition 1.1. We define the generating function Φ(z) as such:

Φ(z) =
∞∏
n=1

(
x2n−1

z2
+ 1

)(
z2x2n−1 + 1

)
.

Definition 1.2. We define the second generating function Ψ(z) in terms of Φ(z):

Ψ(z) = Φ(z)
∞∏
n=1

(1− x2n).

Later on, we will equate Ψ(z) to the LHS of the Jacobi Triple Product by using a
Laurent series, and use the functional equations we study below to produce the three-term
product on the RHS.1

Lemma 1.3.
Φ(z) = xz2Φ(xz).

1This derivation closely follows the methods used in [2], which discusses in detail the applications of
the Jacobi Triple Product to finding lattice points on spheres.
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Proof. Through substituting xz into the definition of Φ(z), we have:

Φ(xz) =
∞∏
n=1

(
x2n+1

z2
+ 1

)(
x2n+1z2 + 1

)
.

We proceed by multiplying the second factor in our product by 1+xz2

1+xz2
, to yield:

Φ(xz) =
1

1 + xz2

∞∏
n=1

(
x2n−1z2 + 1

) ∞∏
n=1

(
x2n+1

z2
+ 1

)
From here, it is possible to bring out the first term of the second product and re-index

to 1. Then, we have

Φ(xz) =
1

1 + xz2

∞∏
n=1

(
x2n−1z2 + 1

)
·
(

1 +
1

xz2

) ∞∏
n=1

(
x2n−1

z2
+ 1

)
=

(
1

1 + xz2

)(
1 +

1

xz2

) ∞∏
n=1

(
x2n−1z2 + 1

)(x2n−1

z2
+ 1

)
.

Note that the infinite product is equal to Φ(z). So, we have

Φ(xz) =

(
1

1 + xz2

)(
1 + xz2

xz2

)
Φ(z)

=
Φ(z)

xz2
.

So, we find that
Φ(z) = xz2Φ(xz),

as desired.
�

Lemma 1.4. We find that the same property holds for Ψ(z) as well, namely:

Ψ(z) = xz2Ψ(xz).

Proof. Again, we substitute xz for z into the definition of the generating function in
question, Ψ(z). This yields

Ψ(xz) = Φ(xz)
∞∏
n=1

(
1− x2n

)
.

Now, we can make use of the result from Lemma 1.3, and substitute Φ(z)
xz2

for Φ(xz).
Then, we have

Ψ(xz) =
Φ(xz)

xz2

∞∏
n=1

(
1− x2n

)
=

Ψ(z)

xz2
.
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Thus,

Ψ(z) = xz2Ψ(xz).

�

Lemma 1.5. There is yet another functional equation that Φ and Ψ hold in common:

Φ(z) = Φ

(
1

z

)
,

and

Ψ(z) = Ψ

(
1

z

)
.

Proof. The results follow after substituting x = z−2 into Lemmas 1.3 and 1.4.
�

2 Laurent Series

Definition 2.1. A Laurent Series for a complex-valued function f(z) centered at z = z0

is an infinite series representation of f(z) of the form

∞∑
k=1

ak
(z − z0)k

+
∞∑
k=0

bk(z − z0)k,

or more simply:

∞∑
k=−∞

ck(z − z0)k.

Unlike the Taylor series, which is an infinite series composed from terms raised to
non-negative powers, the terms of Laurent series include negative powers as well. A
key difference between Taylor and Laurent series is that while the former represents
holomorphic functions defined on a disc centered at z0, the latter is more versatile, being
able to represent holomorphic functions defined on an annulus centered at z0. In practice,
the Laurent series is used on complex functions when the use of Taylor series is impossible.
As a consequence, the class of functions that can be represented by a Laurent series is
far more expansive than those compatible with the Taylor series. 2

For the next step in the derivation of the Jacobi Triple Product, we shall construct a
Laurent series expansion for Ψ(z).

Lemma 2.2. There exist Laurent3 coefficients ck such that ck = c−k, and

Ψ(z) =
∞∑

k=−∞

ck(z2k).

2For a more extensive look into Laurent Series, visit [1].
3We assume here that Ψ(z) is a holomorphic function defined on an annulus. The proof is not included,

as it is beyond the scope of this paper.
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Proof. We begin by noting that Ψ(z) is an even function, which follows after checking
that Φ(−z) = Φ(z) in 1.1, and using this fact to show that Ψ(−z) = Ψ(z) in 1.2. Since
Ψ(z) is an even function, all odd powers will vanish in its Laurent series expansion, thus
yielding the series

Ψ(z) =
∞∑

k=−∞

ck(z2k).

Now, all that is left to prove is that ck = c−k. This is accomplished after applying
Lemma 1.5, with which we can show that

Ψ(z) =
∞∑

k=−∞

ck(z2k)

=
∞∑

k=−∞

ck(z−2k).

This implies that ck = c−k, completing the proof.
�

Lemma 2.3. The coefficients of the Laurent series for Ψ(z) satisfy the following condi-
tion:

ck = ck−1x
2k−1 ∀k ∈ Z.

Proof. We showed in Lemma 1.4 that Ψ(z) = xz2Ψ(xz). Together with the Laurent
expansion of Ψ(z), we can write

Ψ(z) =
∞∑

k=−∞

ck(z2k)

= xz2

∞∑
k=−∞

ck
(
(xz)2k

)
=

∞∑
k=−∞

ck(x2k+1z2k+2).

Then, we can re-index this last sum by setting k = j − 1, which yields the sum

Ψ(z) =
∞∑

j=−∞

cj−1(x2j−1z2j).

Now, we can equate this sum with the sum from Lemma 2.2 and equate the coefficients
of the z2k term, after which we have

ck = ck−1x
2k−1.

�
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Lemma 2.4. The Laurent coefficients of the Ψ generating function satisfy another useful
property, namely:

ck = c0x
k2 ∀k ∈ Z

Proof. We provide a proof by induction. The base case for k = 0 is evident. Now, assume
that for some k, ck = c0x

k2 . Then, using the result from Lemma 2.3, we have:

ck+1 = ckx
2k+1

= c0x
k2+2k+1

= c0x
(k+1)2 ,

Thus completing the proof.
�

Lemma 2.5. We note that the first Laurent coefficient for Ψ(z) has the following value:

c0 = 1

Proof. To prove that c0 = 1, we will equate two different calculations of Ψ(1). The first
method will be to substitute z = 1 into the definition for Ψ(z) given in 1.2, which requires
the calculation of Φ(1). So, by the definition of Φ(z) given in 1.1, we have

Φ(1) =
∞∏
n=1

(1 + x2n−1)2.

Substituting this into the expression for Ψ(1), we get

Ψ(1) = Φ(1)
∞∏
n=1

(
1− x2n)

=
∞∏
n=1

(
1 + x2n−1

)2 (
1− x2n

)
.

Alternatively, we could calculate Ψ(1) by substituting z = 1 into 2.2, which yields

Ψ(1) =
∞∑

k=−∞

ck.

Then, we can utilize the formula for ck that we derived in 2.4, after which we would have

Ψ(1) = c0

∞∑
k=−∞

xk2 .

Together with the other equation for Ψ(1) that we found earlier, it is implied that there
is no coefficient on the sum above, meaning that c0 must be equal to 1.

�
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3 Proof of the Jacobi Triple Product

To begin our last steps towards proving the Jacobi Triple Product, we will have to rewrite
Ψ(z). Combining the expression for the Laurent coefficient ck that we found in 2.4, the
fact that c0 = 1, and the Laurent series expansion that we found in 2.2, we have

Ψ(z) =
∞∑

k=−∞

xk2z2k.

By substituting the definition of Φ(z) from 1.1 into the definition for Ψ(z) from 1.2, we
have

Ψ(z) =
∞∏
n=1

(
1 + x2n−1z2

)(
1 +

x2n−1

z2

)(
1− x2n

)
.

Then, all that is left to do is to equate this formula for Ψ(z) with the one we derived
earlier, thus producing the Jacobi Triple Product formula:

∞∑
k=−∞

xk2z2k =
∞∏
n=1

(
1 + x2n−1z2

)(
1 +

x2n−1

z2

)(
1− x2n

)
. (1)

4 Euler’s Pentagonal Number Theorem

The Euler Pentagonal Number Theorem is a special case of the Jacobi Triple Product
that equates the infinite product in the Euler Function given by E(z) =

∏∞
n=1 (1− zn)

(not to be confused with the Euler Totient function) to its series representation. Before
we derive the Pentagonal Number Theorem, we shall look at a few related special cases
of the Jacobi Triple Product.

Example 1. We can perform some simple substitutions upon the Jacobi Triple Product
to obtain a generating function for square numbers. If we let z equal 1 in (1), we get:

∞∑
k=−∞

xk2 =
∞∏
n=1

(
1 + x2n−1

)2(
1− x2n

)
.

Similarly, we can perform different substitutions to obtain generating functions for other
types of numbers, like triangular and pentagonal numbers.

Example 2. Performing the substitution z = x followed by x =
√
x in the Jacobi Triple

Product from (1) yields

∞∑
k=−∞

x
k(k+1)

2 =
∞∏
n=1

2

(
1 + xn

)2(
1− xn

)
.

This is the generating function for the triangular numbers; the exponent of the sum-
mand is k(k+1)

2
, which follow the pattern 1, 3, 6, 10, . . . .

Example 3. Euler’s Pentagonal Number Theorem is derived in a similar fashion; we
perform the substitutions x = x

3
2 and then z = −

√
x on the Jacobi Triple Product to

get:
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∞∑
k=−∞

(−1)kx
k(3k+1)

2 =
∞∏
n=1

(
1− x3n−1

)(
1− x3n−2

)(
1− x3n

)
=
∞∏
n=1

(
1− xn

)
,

thus yielding the desired result.
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