
INTRODUCTION THE J-INVARIANT
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Abstract. In this paper, we study the j-function, an important tool in complex analysis
and modular theory. It defines a crucial invariance for elliptic curves, and also, as we prove,
serves as a bijection between SL2(Z)\H and C. In order to define this function, we go over
the basics of representation theory, and then explain more about lattices and the functions
such as the Eisenstein series and the Weierstrass elliptic function. Lastly, we move on
to modular functions, and set up the foreknowledge required to define the j-function as
a modular function itself. We conclude with some interesting properties about the said
function and a proof of aforementioned bijection.

1. Representations

We start with the definition of a representation:

Definition 1.1. A representation of a group G over a field F is a vector space V together
with a group homomorphism φ that sends G to GL(V,C), the general linear group of V over
C. We denote this representation as (V, φ)

Note that a group homomorphism is a map between two groups that preserves the group
operation. Because representations are essentially vector spaces, we can consider the repre-
sentations of their subspaces:

Definition 1.2. If W is a subspace of V and φ(g)(w) ∈ W ∀g ∈ G,w ∈ W , then we call
W a subrepresentation of V .

We can also combine representations together by taking the direct sum:

Definition 1.3. The direct sum of two representations (U, ρ) and (V, φ) of a group G is the
representation (U ⊕ V, ρφ).

A representation is called irreducible if it cannot be expressed as the direct sum of its
subrepresentations, and reducible if it can. In fact, any representation can be expressed as a
unique direct sum of irreducible representations; see [FH91] for a proof.

Definition 1.4. Let g ∈ G and (V, φ) be a representation of G. Then the character of g
with respect to V , usually denoted as χV (g), is the trace of φ(g).

Remark 1.5. If V has dimension n, then χV (e) = n.

Characters have the interesting property that they are constant over conjugacy classes,
i.e. χV (hgh−1) = χV (g) for g, h ∈ G. [FH91]

2. Lattices

After establishing a basic understanding of representation theory, we move on to lattices :
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Definition 2.1. A lattice L is an additive subgroup of C generated by two nonzero complex
numbers ω1, ω2 such that =(ω1

ω2
) 6= 0.

This last condition is necessary to ensure ω1 and ω2 are linearly independent. One common
example of a lattice is Z[i], the lattice generated by 1 and i.

Definition 2.2. Two lattices L1, L2 are said to be homothetic if there exists λ ∈ C such
that L1 = λL2.

Basically, two lattices are homothetic if the ratios between their generators are equal. We
call the equivalence class generated by a homothety a homothety class.

We now introduce the Eisenstein series along with the Weierstrass elliptic function:

Definition 2.3. Let n ≥ 3 and L be a lattice. We define the Eisenstein series of order n to
be

En(L) =
∑

ω∈L\{0}

1

ωn
.

Proposition 2.4. En(L) converges absolutely for real n ≥ 3 and lattice L.

Proof. Let ω1, ω2 ∈ C be the generators of L. We will show that∑
ω∈L\{0}

∣∣∣∣ 1

ωn

∣∣∣∣ =
∑
x,y∈Z

(x,y)6=(0,0)

1

|xω1 + yω2|n

converges. Now we define M ∈ R as the minimum value of |ω1 cosα + ω2 sinα| for α ∈ R.

Then setting α = cos−1

(
x√
x2+y2

)
gives

|ω1 cosα + ω2 sinα| =

∣∣∣∣∣ x√
x2 + y2

ω1 +
y√

x2 + y2
ω2

∣∣∣∣∣ ≥M,

or |xω1 + yω2| ≥M
√
x2 + y2. Substituting, our summation satisfies the inequality∑

ω∈L\{0}

∣∣∣∣ 1

ωn

∣∣∣∣ ≤ 1

Mn

∑
x,y∈Z

(x,y)6=(0,0)

1

(x2 + y2)
n
2

≤ 1

Mn

∫∫
x2+y2≥1

1

(x2 + y2)
n
2

.

Thus it suffices to show that this integral converges, which immediately follows from a polar
substitution. �

Definition 2.5. For z ∈ C and lattice L, we define the Weierstrass elliptic function as

℘(z;L) =
1

z2
+

∑
ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

)
.

Remark 2.6. The Weierstrass elliptic function is even, i.e. ℘(z;L) = ℘(−z;L).

Note that ω ∈ L\{0} implies −ω ∈ L\{0}. The Weierstrass elliptic function is an example
of an elliptic function, as a meromorphic function satisfying ℘(z + ω) = ℘(z) ∀ω ∈ L. We
will briefly touch upon elliptic functions in Chapter 3.

The Weierstrass elliptic function satisfies the following properties, of which we will prove
a few relevant to this paper:
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Proposition 2.7. The set of singularities of ℘(z;L) is equivalent to the set of lattice points
in L [Cox89].

Proposition 2.8. The Laurent expansion of ℘(z;L) at 0 is

℘(z;L) =
1

z2
+
∞∑
n=1

anz
2n,

where

an = (2n+ 1)
∑

ω∈L\{0}

1

ω2n+2
.

Proof. Let S be a summation given by

S =
1

ω2

∞∑
k=1

(k + 1)
( z
ω

)k
.

This is essentially a geometric sum, so we solve to get( z
ω

)−1

S =
1

ω2

∞∑
k=0

(k + 2)
( z
ω

)k
(

1− ω

z

)
S = − 2

ω2
− 1

ω2

∞∑
k=1

( z
ω

)k
= − 2

ω2
− 1

ω2
·

z
ω

1− z
ω

S = − 2z

ω2(z − ω)
+

z2

ω2(z − ω)2
=

2ωz − z2

ω2(z − ω)2

S =
1

(z − ω)2
− 1

ω2
.

Thus, the Weierstrass elliptic function can be expressed as

℘(z;L) =
1

z2
+

∑
ω∈L\{0}

(
1

ω2

∞∑
k=1

(k + 1)
( z
ω

)k)
.

Using [RS15], we simplify to get

℘(z;L) =
1

z2
+
∞∑
k=1

bkz
k,

where

bk = (k + 1)
∑

ω∈L\{0}

1

ωk+2
.

But observe that if k is odd, then

bk =
1

2
(k + 1)

∑
ω∈L\{0}

(
1

ωk+2

)
+

1

2
(k + 1)

∑
−ω∈L\{0}

(
1

(−ω)k+2

)
= 0.

Thus, we can eliminate all the odd terms and let ak = b2k, giving us our desired result. �
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Expanding out the first few terms of the Laurent expansion, we define

g2 = 60E4(L) = 60
∑

ω∈L\{0}

1

ω4

g3 = 140E6(L) = 140
∑

ω∈L\{0}

1

ω6

so that

℘(z;L) =
1

z2
+
g2

20
z2 +

g3

28
z4 +O(z6).

Observe that an can actually be written as a polynomial in g2, g3. Now, we define the
discriminant of a lattice L, a crucial part of the j-function.

Definition 2.9. The discriminant of lattice L is given by

∆(L) = g2L
3 − 27g3L

2.

Interestingly, ∆(L) is also the discriminant of the polynomial p(x) = 4x3−g2x−g3 [Cox89].
We also have the following property:

Proposition 2.10. The Weierstrass elliptic function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Proof. Observe the polynomial f(z) = ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3. Using the Laurent
expansion of the elliptic function, we get

f(z) = O(z2),

so f has no poles at 0. Because ℘(z) is meromorphic and doubly-periodic, it is an elliptic
function, which we will define later on in the paper. Clearly the powers of an elliptic function
are elliptic, and the derivative is also (which we will refer to later). But all elliptic functions
with poles are bounded, so by Liouville’s Theorem f is constant, and taking z = 0 gives
f(z) = 0, as desired. �

Corollary 2.11. The discriminant of a lattice is always nonzero.

By [Apo90], the roots of p(x) (defined above) are distinct. Then this corollary follows
immediately from the fact that the discriminant of the polynomial is the product of the
squares of the differences between its roots.

3. Modular Functions

We denote the upper-half plane as H = {z ∈ C | =(z) > 0}. In the context of modular
functions, the group of invertible 2×2 matrices, SL2(Z), acts onH through a linear fractional

transformation. Specifically, for τ ∈ H and

(
a b
c d

)
∈ SL2(Z), we have(

a b
c d

)
· τ =

aτ + b

cτ + d
.

Remark 3.1. SL2(Z) is commonly referred to as the modular group Γ.

Definition 3.2. Two points τ1, τ2 ∈ H are considered SL2(Z)-equivalent if there exists
γ ∈ SL2(Z) such that τ1 = γ · τ2.
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With this, we can construct a region in H that represents all SL2(Z) equivalence classes:

Definition 3.3. The fundamental region of Γ is defined by

D =

{
z ∈ H

∣∣∣∣ |z| > 1, −1

2
≤ <(z) <

1

2

}
∪
{
z ∈ H

∣∣∣∣ |z| = 1, −1

2
≤ <(z) ≤ 0

}
.

Figure 1. The fundamental domain, here denoted RΓ [BB87]

Proposition 3.4. D satisfies the following properties:

(1) Any two distinct points in F are not SL2(Z)-equivalent.
(2) Every point in H is SL2(Z)-equivalent to a point on D.

This is not too difficult given that the generators of SL2(Z) are

S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
corresponding to the maps S : z 7→ −1

z
and T : z 7→ z + 1.

Definition 3.5. An elliptic function f is a meromorphic function that is periodic in two
ways. That is, there exists nonzero ω1, ω2 ∈ C, denoted as periods, with =(ω1

ω2
) 6= 0 such that

f(z) = f(z + ω) and f(z) = f(z + ω2) ∀z ∈ C .

Clearly the Weierstrass elliptic function satisfies these properties; its periods are just the
generators of the lattice. Elliptic functions satisfy the interesting property that taking the
derivative results in another elliptic function.

Definition 3.6. A function f : H → C is called a modular function if

(1) f is meromorphic in H.
(2) f(γ · τ) = τ for any γ ∈ SL2(Z) and τ ∈ H.
(3) The Laurent series of f can be expressed as

f(τ) =
∞∑

n=−m

a(n)e2πinτ ,

called the q-expansion of f .
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Modular functions are essentially modular forms of weight 0. However, the subject of
modular forms is quite difficult to comprehend, so we will only state the interesting property
that holomorphic modular forms of weight k form a finite dimensional vector space Mk. One
particular linear operator on modular functions is the Hecke operator :

Definition 3.7. The nth Hecke operator Tn on the modular function f is defined by

Tnf(τ) =
∑
d|n

d−1∑
a=0

f

(
nτ + ad

d2

)
.

Proposition 3.8. Tnf has the Fourier expansion

Tnf(τ) =
∞∑
m=0

e2πimτ

 ∑
d| gcd(m,n)

1

d
· a
(mn
d2

) .

4. The j-invariant

We finally have enough material to construct the j-function. Firstly, we define the j-
invariant, which also gives invariance in respect to elliptic curves:

Definition 4.1. The j-invariant of a lattice L is defined as

j(L) = 1728 · g2(L)3

g2(L)3 − 27g3(L)2
,

where g2, g3 are the previously defined coefficients in the Laurent expansion of ℘(z;L).

Observe that g2(L)3 − 27g3(L)2 = ∆(L), and by Corollary 2.11 it is never zero. Phew!
Now, the j-function is essentially a j-invariant that takes in a complex number instead of a
lattice.

Definition 4.2. For some τ ∈ H, we define the j-function to be a complex-valued function
that sends τ to the j-invariant of the lattice generated by [1, τ ]. Modifying g2(τ) = g2([1, τ ])
and g3(τ) = g3([1, τ ]) gives the equation

j(τ) = 1728 · g2(τ)3

g2(τ)3 − 27g3(τ)2
.

The j-function satisfies various theorems, several of which are listed below:

Theorem 4.3. j(τ) is holomorphic on H [Cox89].

Theorem 4.4. Lattices L and L′ are homothetic if and only if j(L) = j(L′).

Proof. Suppose L′ = λL for some nonzero λ ∈ C. Then we obtain

g2(L′) = 60
∑

ω∈L\{0}

1

(λω)4
=

1

λ4
g2(L)

g3(L′) = 140
∑

ω∈L\{0}

1

(λω)6
=

1

λ6
g3(L)

and the factor of λ−12 cancels, giving j(L′) = j(L).
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Now we prove the reverse; we are given that j(L′) = j(L). Suppose there exists λ ∈ C
with g2(L′) = g2(λL) and g3(L′) = g3(λL). Then using the Weierstrass elliptic function gives

℘(z;L′) =
1

z2
+
∞∑
n=1

f(g2(L′), g3(L′))z2n =
∞∑
n=1

f(g2(λL), g3(λL))z2n = ℘(z;λL).

Thus ℘(z;L′) and ℘(z;λL) must have the same Laurent expansion at 0, so ℘(z;L′) = ℘(z;λL)
on a neighborhood U about 0. Also note that ℘(z;L′) and ℘(z;λL) are analytic on Ω :=
C \(L′ ∪ λL), and that the set

{z ∈ Ω: ℘(z;L′) = ℘(z;λL)}
has a limit point in U ∩ Ω. Thus ℘(z;L′) = ℘(z;λL) for all z ∈ Ω, implying that they have
the same poles. Then we are done by Proposition 2.7. Now all we need to do is show that λ
exists. Notice that g2(L′) and g3(L′) cannot both be zero, so then depending on which one
is nonzero, let

λ = 4

√
g2(L)

g2(L′)
or λ = 6

√
g3(L)

g3(L′)
,

and one can show by simple substitution into j(L′) = j(L) that the statement holds. �

Theorem 4.5. τ1, τ2 ∈ H are SL2(Z)-equivalent if and only if j(τ1) = j(τ2).

The proof of this is similar to the proof for lattices.

Proposition 4.6. The j-function diverges; in other words,

lim
=(τ)→∞

j(τ) =∞.

Proof. Let τ = a+ bi, and consider the value of

g2(τ) = 60
∑
ω∈[1,τ ]

1

ω4
= 120

∞∑
m=1

1

m4
+ 60

∑
m

∑
n6=0

1

(m+ nτ)4
.

But as n 6= 0, we have

lim
=(τ)→∞

1

(m+ nτ)4
= lim

b→∞

1

(m+ na+ nbi)4
= 0,

immediately implying that

lim
b→∞

g2(a+ bi) = 120
∞∑
m=1

1

m4
=

4

3
π4.

Similarly, we have

lim
b→∞

g3(a+ bi) = 280
∞∑
m=1

1

m6
=

8

27
π6.

Thus, we substitute these values in for the j-function to get

lim
b→∞

j(a+ bi) = 1728 ·
lim
b→∞

g2(a+ bi)3

lim
b→∞

[g2(a+ bi)3 − 27g3(a+ bi)2]
= 1728 ·

64
27
π12

64
27
π12 − 27( 64

729
π12)

=∞

�
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An immediate consequence of this proposition is that j(τ) has a pole at i∞, implying it
is meromorphic. Along with Theorem 4.5, we obtain the following corollary:

Corollary 4.7. The j-function is a modular function for SL2(Z).

Theorem 4.8. The j-function is a bijection between SL2(Z)\H and C.

Proof. It suffices to prove surjectivity, as Theorem 4.5 implies injectivity. Let j(τk) be a
sequence in C that converges to some w ∈ C. Due to Theorem 4.5, we can restrict all τk to
the fundamental domain D, or that |<(τk)| ≤ 1

2
and |=(τk)| ≥

√
32. If =(τk) is unbounded,

then because of 4.6 j(τk) must contain a subsequence that converges to ∞, a contradiction.
Thus =(τk) is bounded, and τk lies in a compact subspace of H. But then this implies that
there exists a subsequence of τk converging to some τ ′ ∈ H. As j(τ) is continuous and
j(τk) converges to w, we must have that j(τ ′) = w, implying that the w lies inside j(H).
Therefore, the image of j(τ) must be a closed set in C. However, we also know that j(τ) is
holomorphic on H and that j(τ) is nonconstant. Then by the open mapping theorem, the
image of j(τ) must be an open set. The only set in C that is clopen is C itself, so j(τ) is
surjective. �
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