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1 Introduction

Here’s the Flint Hills series:
∞∑
n=1

1

n3 sin2(n)

It’s an open problem whether this series converges. Since convergence is related to how often sin(n) has
small values, it’s also related to the question of how well π can be approximated by rational numbers.

2 But I Thought π Was Rational

For a number x, the irrationality measure µ(x) is the smallest (i.e., greatest lower bound of such) m such
that ∣∣∣∣x− p

q

∣∣∣∣ < 1

qm

holds for only finitely many p and q. For instance, let x be rational, say x = r
s . Then∣∣∣∣rs − p

q

∣∣∣∣ =

∣∣∣∣rq − psqs

∣∣∣∣ ≥ 1

qs

Therefore, for any ε > 0, the inequality ∣∣∣∣rs − p

q

∣∣∣∣ < 1

q1+ε

can only hold for finitely many pairs p, q (it stops working when qε > s). Since the greatest lower bound of
the exponent is 1, the irrationality measure of any rational number is 1. Next are the algebraic numbers.

Definition 2.1 (Algebraic Number). A number α which is the root of a degree d polynomial with integer
coefficients, but not a root of any lower-degree polynomial, is an algebraic number of degree d.

The first big result regarding irrationality of algebraic numbers is Liouville’s Theorem.

Theorem 2.1 (Liouville’s Approximation Theorem). For an algebraic number α of degree d and a rational
approximation p

q to α, we have ∣∣∣∣α− p

q

∣∣∣∣ > C

qd

where C is a constant.

Proof. If α is an algebraic number of degree d, then there is a polynomial f(x) = c0 + c1x+ · · ·+ cdx
d with

α as a root. Note that ∣∣∣∣f (pq
)∣∣∣∣ =

∣∣∣∣c0qd + c1p
dqd−1 + · · ·+ cdp

d

qd

∣∣∣∣ ≥ 1

qd
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since the numerator is an integer and f
(
p
q

)
= 0 would mean that f is not of minimal degree. We can apply

the Mean Value Theorem to see that there must be some b such that

f ′(b) =
f(α)− f(pq )

α− p
q

Therefore, ∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣∣∣f(α)− f(pq )

f ′(b)

∣∣∣∣∣ ≥
∣∣∣∣∣

1
qd

f ′(b)

∣∣∣∣∣ =

∣∣f ′(b)−1∣∣
qd

Let ε be such that (α−ε, α+ε) contains no points where f ′ is zero. Then C = min(f ′(x)−1) for x ∈ (α−ε, α+ε)
satisfies the inequality ∣∣∣∣α− p

q

∣∣∣∣ > C

qd

for all rational p
q in the interval (α− ε, α+ ε), as desired.

It turns out Liouville’s Theorem is relatively weak. The strongest result is

Theorem 2.2 (Thue-Siegel-Roth Theorem). For an algebraic number α, integral p and q, and ε > 0, the
inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ε

has only finitely many solutions.

This is just a little too involved for us to show here; Roth got a Fields medal for proving it. The
Thue-Siegel-Roth Theorem implies that µ(x) = 2 for any algebraic x. We also know that µ(x) ≥ 2 for
transcendental x. While it is known that e has irrationality measure of 2, and in fact it has been shown that
almost all real numbers have irrationality measure of 2, the irrationality measure of π is not known. All we
can say for now is that 2 ≤ µ(π) ≤ 7.103 . . . , but if it turns out the Flint Hills Series converges we can shrink
that bound even smaller.

3 The Flint Hills Series

This section will show a relationship between the convergence of Flint Hills-like series and µ(π). About 90%
of the proof is borrowed from Alekseyev’s paper on the topic [1] in which he deals with more general series
of the form

∞∑
n=1

1

nu|sinv(n)|

The first thing we’ll talk about is µ(π). By the definition of µ(π), we know that for any ε > 0,

|π − p

q
| < 1

qµ(π)+ε

holds only finitely many times. Before we do anything else, let’s have a lemma.

Lemma 3.1. For all x with 0 < x < π
2 , we have sinx > 2

πx.
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Figure 1: “Proof by Desmos”

Let’s put this to use. First, note that there is always some integral m such that 0 < |n−mπ| < π
2 . Since

we must also have sinn = sin (n−mπ) for any integral m, we can say that

sin |n−mπ| = |sin(n−mπ)| = |sinn| > 2

π
|n−mπ|

|sinn| > 2m

π

∣∣∣π − n

m

∣∣∣
This looks like the irrationality inequality for π. By definition of µ(π), we know that∣∣∣π − n

m

∣∣∣ < 1

mµ(π)+ε

for only finitely many coprime m and n. Therefore, for large enough m and n, we must have∣∣∣π − n

m

∣∣∣ > 1

mµ(π)+ε

which means

|sinn| > 2

πmµ(π)−1+ε

Since the ratio n
m goes to π as n increases, we can substitute n for m and absorb all our constants into a

constant factor:

|sinn| > C
2

πnµ(π)−1+ε

|sinn| > C
1

nµ(π)−1+ε

We’re getting very close to a Flint Hills Series term. A few more manipulations will get us all the way there:

1

|sinn|
< C

1

n−µ(π)+1−ε

1

|sinv n|
< C

1

n−vµ(π)+v−ε

1

nu |sinv n|
< C

1

nu−vµ(π)+v−ε

So, we have
1

nu|sinv(n)|
= O

(
1

nu−(µ(π)−1)v−ε

)
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for large enough n. Observe that the sequence 1
nu|sinv n| converges to zero only when u− (µ(π)− 1)v− ε > 0.

So, convergence of
∑∞
n=1

1
nu|sinv(n)| implies µ(π) < 1 + u

v (however, note that the converse is not necessarily

true). We also conclude that µ(π) > 1 + u
v implies divergence of both the sequence 1

nu|sinv n| and the series∑∞
n=1

1
nu|sinv(n)| . For the regular Flint Hills Series, u = 3 and v = 2, so convergence would imply µ(π) ≤ 2.5.

For context, the most recent upper bound on µ(π) is 7.103205 . . . [4].

4 Continued Fraction Approximations

To calculate the continued fraction [a0; a1, a2 . . . ] for a number x, we take a0 = bxc, then a1 = b 1
x−bxcc, and

so on down the line. For instance, the continued fraction for π begins

3 +
1

7 +
1

15 +
1

1 +
1

292 + · · ·

The kth continued fraction approximation or the kth convergent of x, which we denote by pk
qk

, is what we
get when we truncate x’s continued fraction after the kth plus sign. For example, the convergents to π are
3, 22

7 , 333
106 , 355

113 , and so on. These approximations have many interesting properties, the first of which is the
recurrence for pn and qn we proved in Week 8. We have

pn = anpn−1 + pn−2

and
qn = anqn−1 + qn−2

As a direct result of these recurrences (plus the fact that all the ans, qns, and pns are positive integers),
we can say qk+1 > qk and pk+1 > pk for all k. It is often said that continued fractions provide the “best”
approximations to a number, but the sense in which this is true is somewhat subtle. The property of
continued fractions that justifies calling them the “best” approximations is the following:

Theorem 4.1. let pn
qn

be the nth convergent of x. Then for all p, q such that

|qx− p| < |qnx− pn|

we must have q ≥ qn+1. Equivalently, if q < qn+1, then

|qx− p| ≥ |qnx− pn|

Unfortunately the proof is a little too long and a little too unrelated to the Flint Hills Series to include
here, but a version of it can be found at [3].

Corollary 4.1.1. For all p, q with q ≤ qn, we have |x− pn
qn
| ≤ |x− p

q |.

Proof. Suppose we have some p, q with q ≤ qn. Then we must have q < qn+1, which by Theorem 4.1 implies

|qx− p| ≥ |qnx− pn|

Using q ≤ qn we see that 1
q ≥

1
qn

. Therefore

1

q
|qx− p| ≥ 1

qn
|qnx− pn|

|x− p

q
| ≥ |x− pn

qn
|
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So, the kth convergent of x is the closest rational number to x out of all rationals with a denominator
less than or equal to qk. Out of the rationals with denominators between qk and qk+1, pk

qk
is not necessarily

the closest to x. (For instance, 13
4 , with denominator between q1 = 1 and q2 = 7, is closer to π than p1

q1
= 3

1 .)

However, Theorem 4.1 tells us that the inequality |qx − p| ≥ |qkx − pk| holds for qk ≤ q < qk+1, so we can
still consider pk

qk
the “closest” approximation to x in that sense. There is one more property of continued

fractions that we will be using:

Theorem 4.2. Let the kth convergent of x be pk
qk

. Then

|qkx− pk| >
1

2qk+1

Proof. Since pk 6= pk+1 and qk 6= qk+1, we know that |qk+1pk − pk+1qk| is a positive integer. So,

1

qkqk+1
≤ |qk+1pk − pk+1qk|

qkqk+1
=

∣∣∣∣pkqk − pk+1

qk+1

∣∣∣∣ =

∣∣∣∣pkqk − x+ x− pk+1

qk+1

∣∣∣∣
By the triangle inequality, ∣∣∣∣pkqk − x+ x− pk+1

qk+1

∣∣∣∣ ≤ ∣∣∣∣pkqk − x
∣∣∣∣+

∣∣∣∣x− pk+1

qk+1

∣∣∣∣
Now suppose for the sake of contradiction that |qkx− pk| ≤ 1

2qk+1
. Then we have∣∣∣∣pkqk − x

∣∣∣∣ ≤ 1

2qkqk+1

and ∣∣∣∣pk+1

qk+1
− x
∣∣∣∣ ≤ 1

2qk+1qk+2
≤ 1

2q2k+1

So,
1

qkqk+1
≤ 1

2qkqk+1
+

1

2q2k+1

1

2qkqk+1
≤ 1

2q2k+1

1

qk
≤ 1

qk+1

qk ≥ qk+1

and we know that’s not true. Therefore, |qkx− pk| > 1
2qk+1

.

5 The uliπnt vills
∑

eries

In another paper due to Chakhkiev, Ziroyan, Tretyakov, and Mouhammad [2], we find some interesting
things to say about an even more general series

∞∑
n=1

1

nu|sinv(πnx)|

Whether this converges is again related to the irrationality measure of π. If x is rational, then this doesn’t
converge: we’ll eventually have nx ∈ Z, giving us a denominator of 0. So let’s have x be irrational. By
Lemma 3.1, we have

sin(πnx) = sin(πnx−mπ) >
2

π
|πnx−mπ|

sin(πnx) > 2 |nx−m|
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Denote by pk
qk

the kth continued fraction approximation of x. By Theorem 4.1, for all m and all n < qk, we
have

|nx−m| ≥ |qkx− pk|

Therefore, we can replace the numbers in the denominator of our series with smaller numbers like so:

∞∑
n=1

1

nu|sinv(πnx)|
≤
∞∑
n=1

1

nu2v|nx−m|v
≤
∞∑
k=1

qk+1∑
n=qk

1

quk2v|qk+1x− pk+1|v

By Theorem 4.2,

∞∑
k=1

qk+1∑
n=qk

1

quk2v|qk+1x− pk+1|v
≤
∞∑
k=1

qk+1∑
n=qk

1

quk2v| 12q
−1
k+2|v

≤
∞∑
k=1

qk+1∑
n=qk

qvk+2

quk

Now, since we’re not using n anymore and qk+1 − qk < qk+1, we get rid of the inner summation:

∞∑
k=1

qk+1∑
n=qk

qk+1
v

quk
≤
∞∑
k=1

qk+1qk+1
v

quk

Therefore,
∞∑
n=1

1

nu|sinv(πnx)|
≤
∞∑
k=1

qv+1
k+2

quk

We can reduce this even further using some facts about continued fractions (specifically, qn > qn−1 and
qn+1 = anqn + qn−1):

qk+2 = ak+1qk+1 + qk = ak+1akqk + ak+1qk−1 + qk ≤ (ak+1ak + ak+1 + 1)qk ≤ 2ak+1akqk

So,
∞∑
k=1

qv+1
k+2

quk
≤
∞∑
k=1

2(akak+1)v+1qv+1
k

quk
=

∞∑
k=1

2(akak+1)v+1

qu−v−1k

Now we can say some things about the series converging. Intuitively, we expect the denominator to grow
much faster than the numerator when u−v−1 > 0. Indeed, though the proof is slightly beyond the scope of
this paper, the authors found that if u > v + 1 then the series converges “almost everywhere” in a measure-
theoretic sense, meaning everywhere except in a set of measure zero. In other words, there are very few x
such that the series

∞∑
n=1

1

nu|sinv(πnx)|

diverges.
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