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1 Introduction

Here’s the Flint Hills series:

It’s an open problem whether this series converges. Since convergence is related to how often sin(n) has
small values, it’s also related to the question of how well m can be approximated by rational numbers.

2 But I Thought 7 Was Rational

For a number z, the irrationality measure u(x) is the smallest (i.e., greatest lower bound of such) m such
that
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holds for only finitely many p and ¢. For instance, let x be rational, say x = Z. Then
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Therefore, for any € > 0, the inequality
rop 1
s q q1+e

can only hold for finitely many pairs p, ¢ (it stops working when ¢¢ > s). Since the greatest lower bound of
the exponent is 1, the irrationality measure of any rational number is 1. Next are the algebraic numbers.

Definition 2.1 (Algebraic Number). A number a which is the root of a degree d polynomial with integer
coefficients, but not a root of any lower-degree polynomial, is an algebraic number of degree d.

The first big result regarding irrationality of algebraic numbers is Liouville’s Theorem.

Theorem 2.1 (Liouville’s Approximation Theorem). For an algebraic number a of degree d and a rational
approximation g to o, we have

where C is a constant.

Proof. If o is an algebraic number of degree d, then there is a polynomial f(x) = co+ c1x + - - - + cgr? with

« as a root. Note that
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since the numerator is an integer and f (%) = 0 would mean that f is not of minimal degree. We can apply

the Mean Value Theorem to see that there must be some b such that

Therefore,
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Let € be such that (a—e, a+¢) contains no points where f’ is zero. Then C' = min(f’(z)~!) for z € (a—e, ate)
satisfies the inequality
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for all rational £ in the interval (a — €, + ¢€), as desired. O

It turns out Liouville’s Theorem is relatively weak. The strongest result is

Theorem 2.2 (Thue-Siegel-Roth Theorem). For an algebraic number «, integral p and q, and € > 0, the
inequality

has only finitely many solutions.

This is just a little too involved for us to show here; Roth got a Fields medal for proving it. The
Thue-Siegel-Roth Theorem implies that p(z) = 2 for any algebraic 2. We also know that p(z) > 2 for
transcendental z. While it is known that e has irrationality measure of 2, and in fact it has been shown that
almost all real numbers have irrationality measure of 2, the irrationality measure of 7 is not known. All we
can say for now is that 2 < p(7) < 7.103. .., but if it turns out the Flint Hills Series converges we can shrink
that bound even smaller.

3 The Flint Hills Series

This section will show a relationship between the convergence of Flint Hills-like series and u(m). About 90%
of the proof is borrowed from Alekseyev’s paper on the topic [1] in which he deals with more general series

of the form
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The first thing we’ll talk about is p(7). By the definition of p(7), we know that for any € > 0,

1

p
|7T o 6‘ < q/l.(ﬂ')—'rE

holds only finitely many times. Before we do anything else, let’s have a lemma.

Lemma 3.1. Forallx with0 <z < Z

5, we have sinx > %x



Figure 1: “Proof by Desmos”

Let’s put this to use. First, note that there is always some integral m such that 0 < [n —mm| < 7. Since
we must also have sinn = sin (n — mm) for any integral m, we can say that
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sin [n — mz| = |sin(n — mm)| = |sinn| > = |n — mmn|
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This looks like the irrationality inequality for 7. By definition of u(), we know that
n 1
‘” B E‘ mu(m e

for only finitely many coprime m and n. Therefore, for large enough m and n, we must have
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Since the ratio & goes to m as n increases, we can substitute n for m and absorb all our constants into a

constant factor: 5
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We're getting very close to a Flint Hills Series term. A few more manipulations will get us all the way there:
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So, we have
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for large enough n. Observe that the sequence converges to zero only when u— (u(r) —1)v—e > 0.
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So, convergence of Y7 | m implies p(m) < 1+ % (however, note that the converse is not necessarily

true). We also conclude that p(m) > 14 % implies divergence of both the sequence o7 and the series

1
> m For the regular Flint Hills Series, u = 3 and v = 2, so convergence would imply p(7) < 2.5.

For context, the most recent upper bound on p(w) is 7.103205. .. [4].

4 Continued Fraction Approximations

To calculate the continued fraction [ag;a1,as...] for a number z, we take ag = |z], then a; = Lﬁj, and
so on down the line. For instance, the continued fraction for 7 begins
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The kth continued fraction approximation or the kth convergent of z, which we denote by %,

get when we truncate z’s continued fraction after the kth plus sign. For example, the convergents to m are
3, %, %, %, and so on. These approximations have many interesting properties, the first of which is the
recurrence for p,, and g, we proved in Week 8. We have

is what we

Pn = AnPn—1 + Pn—2
and
Qn = QnQn—1 1+ qn—2

As a direct result of these recurrences (plus the fact that all the a,s, ¢,s, and p,s are positive integers),
we can say qrp+1 > qr and pr41 > py for all k. It is often said that continued fractions provide the “best”
approximations to a number, but the sense in which this is true is somewhat subtle. The property of
continued fractions that justifies calling them the “best” approximations is the following:

Theorem 4.1. let f;—: be the nth convergent of x. Then for all p, q such that

lgz — p| < |gn® — pnl

we must have q > qni1. Fquivalently, if ¢ < gni1, then

lgz — p| > |gnz — pn

Unfortunately the proof is a little too long and a little too unrelated to the Flint Hills Series to include
here, but a version of it can be found at [3].

Corollary 4.1.1. For all p, g with q < gy, we have |x — z—”| <l|z-— §|.

Proof. Suppose we have some p, ¢ with ¢ < ¢,,. Then we must have ¢ < ¢,,+1, which by Theorem 4.1 implies

lgz — p| > |gn® — pul

Using q < ¢,, we see that % > qi. Therefore
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So, the kth convergent of x is the closest rational number to x out of all rationals with a denominator
less than or equal to g. Out of the rationals with denominators between g, and g1, 2—: is not necessarily

the closest to . (For instance, %7 with denominator between ¢; = 1 and g3 = 7, is closer to 7 than % = %)
However, Theorem 4.1 tells us that the inequality |gz — p| > |grx — pk| holds for g < g < gg+1, SO we can
still consider p—: the “closest” approximation to x in that sense. There is one more property of continued

fractions that we will be using:

Theorem 4.2. Let the kth convergent of x be %. Then
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Proof. Since py # pr+1 and g # qx+1, we know that |gx+1px — Pr+1qx| is a positive integer. So,
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Now suppose for the sake of contradiction that |grx — pg| < 2q;+1 . Then we have
PE ‘ _
Ik " 2qkqk+1
and ) )
P41 :1:‘ < <—
qk+1 2qk+19k+2 ~ 2454
So,
1 < 1 n 1
k1 T 2001 204
1 1
2qkqk1 ~ 2074
1 1
R S -
qk qk+1
qk 2 Qk+1
and we know that’s not true. Therefore, |gxax — pi| > 2(1k1+1' O

5 The ulirnt vills ) eries

In another paper due to Chakhkiev, Ziroyan, Tretyakov, and Mouhammad [2], we find some interesting
things to say about an even more general series
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Whether this converges is again related to the irrationality measure of 7. If z is rational, then this doesn’t
converge: we’ll eventually have nx € Z, giving us a denominator of 0. So let’s have x be irrational. By
Lemma 3.1, we have

. : 2
sin(mnx) = sin(mnx — mm) > — |mnx — mm|
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Denote by the kth continued fraction approximation of z. By Theorem 4.1, for all m and all n < g, we
have
I —m| > gz — pi

Therefore, we can replace the numbers in the denominator of our series with smaller numbers like so:
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By Theorem 4.2,
00 Qht1 00 Qkt1 00 k1 £+2
D> u2U|qk+lx oo <2 2 ity qk+2|v SIDIE

k=1n=qg k=1n=qx
Now, since we’re not using n anymore and qx4+1 — qx < qx+1, we get rid of the inner summation:
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Therefore,
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We can reduce this even further using some facts about continued fractions (specifically, ¢, > ¢,—1 and
Qn+1 = GnQyn + Qn—l):

Qht2 = Qhp1Qk+1 + Qo = 108Gk + Aki1Qe—1 + Gk < (arr1ak + apr1 + 1)qr < 2ap41014k

So,
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Now we can say some things about the series converging. Intuitively, we expect the denominator to grow
much faster than the numerator when v —v —1 > 0. Indeed, though the proof is slightly beyond the scope of
this paper, the authors found that if u > v + 1 then the series converges “almost everywhere” in a measure-
theoretic sense, meaning everywhere except in a set of measure zero. In other words, there are very few x

such that the series -
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diverges.
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