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1. Abstract

In this paper, we investigate the uses and the applications of the Gauss class number prob-
lem. The class number h(−d), the number of reduced binary quadratic forms of discriminant
d, is used in Gauss’ conjecture where he claimed that as d tends to infinity, so does h(−d).
One of the uses of the class number problem is with the Heegner numbers, which satisfy
h(−d) = 1 for a field Q(

√
−d). The nine Heegner numbers have several interesting proper-

ties, including: being prime generators and producing almost integers (using the j-function).
The j-function and the Heegner numbers were used by the Chudnovsky brothers to find an
approximation for 1

π
. Overall, we discuss the the steps that were taken by many different

mathematicians to prove that only 9 fields of class number one exist, and we also discuss the
implications of the Heegner numbers in related fields of mathematics.

2. Introduction

The class number formula depends on an understanding on imaginary quadratic fields,
which in turn depends on an understanding of the discriminant.

Definition 2.1 (Binary Quadratic Form Discriminants). For a binary quadratic function
ax2 + bxy + cy2, the discriminant d is d ≡ 4ac2 − b.
Definition 2.2 (Imaginary Quadratic Field). An imaginary quadratic field is represented
as Q(

√
−d) and includes all numbers in the form of a+ b

√
−d, where a, b ∈ Q and d ∈ Z+.

Imaginary quadratic fields are used in many parts of mathematics. Two of the most
common imaginary quadratic fields are the Eisenstein and Gaussian integers. The Eisenstein
integers are Q(

√
−3) and the Gaussian integers are Q(

√
−1), the latter of which is equivalent

to the complex numbers a+ bi, where a and b are integers. With this background knowledge
in mind, we can now introduce the class number problem.

Definition 2.3 (Gauss Class Number Problem). For a given n, determine all of the imagi-
nary quadratic fields in the form of Q(

√
−d) with class number n.

Definition 2.4 (Class Number). The class number h(−d) is the number of reduced binary
quadratic forms of discriminant d.

Definition 2.5 (Gauss Conjecture). In his Disquisitiones Arithmeticae (1801), Gauss posed
that h(−d)→∞ as d→∞.

The class number problem has only been solved for small values of n (specifically, for n ≤ 7
and odd n ≤ 23). When n = 1, the imaginary quadratic field has a unique factorization.
Gauss was the first to make progress on the class number problem for n = 1 when he found
imaginary quadratic fields for small class numbers and believed that he had found all of
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them. He did not have a proof yet, so the next big breakthrough occurred when Heilbronn
proved the Gauss Conjecture in 1934 [Hei34].

3. Class Number One

Definition 3.1 (Heegner Number). A Heegner number is a squarefree positive integer d for
which the field Q(

√
−d) has the class number h(−d) = 1.

The term is named after Heegner, who developed a faulty proof of the values and quantity
of Heegner numbers. Later, Stark and Baker independently came up with correct proofs
and showed that there were exactly 9 Heegner numbers, contrary to a previous proof by
Heilbronn and Linfoot that showed there could be a tenth, larger value of −d [Hei34].

Theorem 3.2 (Baker-Stark-Heegner Theorem, [CG12]). There are exactly 9 Heegner num-
bers. These can be expressed as −d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}, or equiv-
alently, δ ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}, where δ is the discriminant of the
imaginary quadratic field Q(

√
−d).

These sets differ because the discriminant ∆ is defined to be

∆ =

{
−d if − d = 1 (mod 4)

−4d if − d = 2, 3 (mod 4)

for an imaginary quadratic field Q(
√
−d).

Because the vast majority of cases with which we are concerned in this paper relate to
the first case, where −d = 1 (mod 4), the discriminant of the quadratic field is generally
referenced as −d, although it is not always equivalent to the −d used in Q(

√
−d). Thus, the

discriminant of Q(
√
−1) is −4, and that of Q(

√
−2) is −8.

A lot of work was done on this problem before a final solution was determined and proved.
The first mathematician to make official progress was Alan Baker.

Theorem 3.3 (Baker, [Bak66]). There is are only nine imaginary quadratic fields with class
number one.

In his paper, he proves a theorem that says that for a sequence of algebraic numbers whose
logarithms are linearly independent over the rational numbers and a separate sequence of
real algebraic numbers that are linearly independent over the rational numbers, the set that
takes the sequence of rational numbers to the power of the sequence of the real algebraic
numbers is transcendental. This theorem proves Gauss’s conjecture that there are only 9
imaginary fields.

Theorem 3.4 (Stark, [S+67]). There is no tenth imaginary quadratic field with class number
one.

Stark attempted to do the opposite of what Baker did. He first proves that if h(−p) = 1
then it is impossible to have p ≥ 200. He does this through constructing several Diophantine
equations,

z2N+1 − 4yN = a3 + 3 p+1
4
≡ 1 (mod 8)

z2N+1 + 4yN = a3 + 3 p+1
4
≡ 5 (mod 8)

z2N+1 + 4yN+1 = a3 − 3 p+1
4
≡ 3 (mod 8)

z2N+1 − 4yN+1 = a3 − 3 p+1
4
≡ 7 (mod 8),
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one of which should hold true if p ≥ 200, and where N is a nonnegative integer that satisfies
h(−8p) = 4N + 2. However, he later shows that there are no solutions to those Diophantine
equations. In a separate section, Stark shows that when p ≥ 19 and has a class number of
1, p must be a prime that is congruent to 19 (mod 24). This includes the all the Heegner
numbers greater than 19, but also includes 139 which is not a Heegner number. Luckily, 139
can be removed because it is the discriminant of two unequal polynomials, x2 + xy + 35y2

and 5x2 + xy + 7y2. Thus, Stark shows that the only Heegner numbers are those listed in
Theorem 3.2.

3.1. Heegner’s Proof. Heegner had written proofs involving the Heegner numbers; ini-
tially, he started with a proof that, if there were another Heegner number not included in
the list of 9 numbers he had found previously, then the value of that Heegner number must
be greater than 109. However, his later and more important proof was an attempt in proving
that the nine values above were the only possible values by constructed a function with an
infinite product and then simplifying it using known representations of the algebraic values
[Hee52].

The function that Heegner constructed was

f(ω) = q−124
∞∏
v=1

(1 + q2v+1),

where q = eiπω.
He defined

γ2 = f(ω)16− 16f(ω)−8.

He knew that when p ≡ 3 (mod 4) and h(−p) = 1, γ2(
−3+

√
−p

2
) was a rational integer.

Because of this, he found an equivalency between f(−3+
√
−p

2
) and a degree 24 polynomial

with integer coefficients of

x24 − ζ2x8 − 16 = 0.

Heegner reduced this polynomial to

x12 + 28 + 2ζ2x4 − 4 = 0.

He then used the relation of

−4ζ(ζ3 + 4) = γ2

to reduce the 12 degree polynomial to a 6 degree polynomial of

x6 + 24 + 22 − 2 = 0.

Mathematicians doubt this reduction because Heegner has no proof for it. He seems to have
been misled by a paper by Weber that made many conjectures about Diophantine equations.
Heegner reduced his polynomial again with the relations

ζ = 2(β − α2) and ζ2 = 2(β2 + 2α)

which leads to

(β2 − 2α2)2 = 2α(α3 + 1)

. This equation should lead to correct values of p whenever α and β were rational integers,
and in fact it works for

p = 3, 11, 19, 43, 67, 163.
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According to Stark, who later on wrote a paper (see [Sta69]) which attempted to explain
where Heegner’s proof went wrong, the last equation in terms of α and β also works when
they are very close to rational integers, so the final equation may have extra answers that
are not Heegner numbers.

4. Properties of Heegner Numbers

4.1. Prime Generators. The Heegner numbers are related to Euler’s prime generating for-
mula n2 − n+ p, where p is a prime. This generator produces primes from n = 0, 1, ..., p− 2
when the field Q(

√
1− 4p) has a class number of 1. This is only satisfied by−7,−11,−19,−43,

− 67, and− 163.
For example, one of the most famous of these polynomials is n2 +n+ 41. Its discriminant

is −1 + 4 · 41 = −163.

4.2. Almost Integers. When Heegner numbers are put into the j-function, they produce

values that are very close to integers. The formula eπ
√
d yields numbers that are close to

integers.

Definition 4.1 (j-function). The j-function is defined by j(τ) = 1728J(τ), where J(τ) ≡
4/27[1− λ(τ) + λ2(τ)]3/λ(τ)[1− λ(τ)]3.

The integer that it approximates is given by −j(1+
√
d

2
) + 744.

Interestingly, fields of class number two (fields that satisfy h(−d) = 2) also provide share
the quality of producing almost integers. However, they are not considered Heegner numbers
because they do not share the other qualities of a Heegner number.

4.3. Transcendental Numbers. The transcendental numbers are numbers that are com-
plex numbers but not algebraic numbers. This means that they cannot be written as a root
of a monic polynomial with integer coefficients.

Definition 4.2 (Ramanujan’s Constant). eπ
√
163 is very close to 6403203 + 744.

This occurs because of a relationship between the q-expansion and j-invariant. When the
j-invariant is an algebraic integer, then Q(

√
−d) has to have a class number one, so d is

a Heegner Number. Other Heegner numbers also approximate integers, but the larger the

Heegner number is, the closer eπ
√
d is to an integer.

5. Connection to Riemann Hypothesis

Definition 5.1 (Dirichlet Character). A completely multiplicative arithmetic function χ
where there exists a positive integer k with χ(n + k) = χ(n) for all n, χ(n) = 0 whenever
gcd(n, k) > 1.

Every Dirichlet character has a corresponding L-function called the Dirichlet L-function:

L(χ, s) =
∞∑
n=1

χ(n)
ns

for any complex number s where the real part of s > 1.



THE CLASS NUMBER PROBLEM 5

Definition 5.2 (Generalized Riemann Hypothesis). For every Dirichlet character χ and
every complex number s with L(χ, s) = 0, as long as s is not a negative number then the
real part of s is 1/2.

The generalized Riemann Hypothesis implies Gauss’s conjecture because the h(−d) would
grow with the absolute value of d. Thus, as d increases indefinitely, so will h(−d).

Theorem 5.3 (Hecke). If d > 0 and χ (mod d) is odd, real and primitive, then when
L(χ, s) 6= 0 for a real s where s > 1− c

logd
,

h(−d) > c1
√
d

logd

where c1 and c are fixed constants. This bound shows that h(−d) grows as d grows. Deuring
connected the class number problem and the Riemann Hypothesis even further.

Theorem 5.4 (Deuring). If the Riemann Hypothesis is false, then h(−d) ≥ 2 for sufficiently
large d.

6. Class Number Two

In 1971, Baker and Stark independently solved Gauss’s class number problem for n = 2.
They were each able to prove the following:

Theorem 6.1. For the class number two, where h(−d) = 2, then −d must be one of
−15,−20,−24,−35,−40,−51,−52,−88,−91,−115,−123,−148,−187,−232,−235,−267,
− 403, or− 427.

Both Baker and Stark’s proofs depend on the logarithms of algebraic numbers and are
quite similar in technique, so we will cover Baker’s proof here. (See [Sta75] for Stark’s proof.)
Namely, it requires the following results:

Theorem 6.2 ([Bak71]). Suppose that α, α′, β, β′, β′′ are nonzero algebraic numbers with
degrees less than or equal to d, where |α′| 6= 1 and α′′ = −1. Additionally, let the heights
(i.e. the magnitude of a polynomial’s greatest coefficient) of α, α′ be less than or equal to

A ≥ 2 and those of β, β′, β′′ be less than or equal to H(log H)2. Let log α, log α′, log α′′ be
linearly independent and have principle values. Then, if ε, δ > 0 and

|β log α + β′ log α′ + β′′ log α′′| < e−δH ,

then H < C(logA)1+ε, where C = C(A′, d, ε, δ) is an effectively computable function.

Theorem 6.3 ([Bak71]). Suppose that p, q are primes where p ≡ 1 (mod 4) and q ≡
3 (mod 4), and let Q(

√
−pq) have class number two. Furthermore, let k > 4 represent

the discriminant of Q(
√
k), and let χ(n) = (k/n) be the Kronecker symbol. Additionally, let

gcd(k, pq) = 1 and define

f = f(x, y) = x2 + xy + 1
4
(1 + pq)y2.

Then, we have

k
√
pq

2π

∞∑
x=−∞

∞∑
y=−∞

χ(f)

f
= h(k)h(−kpq) log ε+ h(kp)h(−kq) log η,
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where (x, y) 6= (0, 0), h(l) represents the class number of Q(
√
l) and ε, η represent the fun-

damental units of the fields Q(
√
k) and Q(

√
kp), respectively.

For brevity, the proofs of these theorems have been excluded, although both can be found
in Baker’s original paper [Bak71].

To prove that all imaginary quadratic fields for which h(−d) = 2 can be determined, Baker
used the results of numerous past papers. After assuming that d = pq and that q > d1/4, he
equated the left hand side of Theorem 6.3 with the results of [Bak69]:

k
√
d

2π

∞∑
x=−∞

∞∑
y=−∞

χ(f)

f
=
πk
√
d

6

∏
p|k

(1− p−2) +B0 +
∞∑

r=−∞,r 6=0

Bre
πir/k,

where B0 = −2 log p for some prime p if k is a power of p, or B0 is otherwise equal to 0.
Additionally,

Br = 2e−π|r|
√
d/k

∑
y|r,y>0

y−1
k∑
j−1

χ(f(j, y))e2πijr/(yk).

Then, taking k = 21 and class number h(k) = 1, and using the result of Theorem 6.3,
Baker derived the inequality∣∣∣∣h(−21d) log ε+ h(21p)h(−21q) log η − 64

21
π
√
d

∣∣∣∣ < e−(1/10)
√
d

for large d. Now, Theorem 6.2 can be used with d = 2, δ = 1/10 and some ε > 0 to obtain
the inequality

√
d < C(

√
p log p)1+ε,

in which C = C(ε) is effectively computable. However, the original assumptions included
statements that d = pq and q > d1/4, which combine to give p < d3/4. According to the
inequality above, this is not true for ε < 1

3
. This contradiction establishes the result that

the determinants of all imaginary quadratic fields of class number two can be determined.

7. Higher Class Numbers

In 1985, Oesterlé was able to classify the imaginary quadratic fields with class number 3
[Oes85] through the application of the L-functions of elliptic curves, after similar discoveries
by Goldfeld allowed for this breakthrough [Gol85]. Nearly two decades later, Watkins was
able to extend this technique to calculate the imaginary quadratic fields of much higher class
numbers [Wat04]. After extensive computation, he was able to obtain the classifications for
imaginary quadratic fields of class numbers less than or equal to 100, which are summarized in
his paper. In total, the process took seven months, at a rate of calculation of 226 discriminants
per second. For now, Watkins’ computations are the most complete in solving the class
number problem.
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8. Conclusion

Gauss’ class number problem is interesting because of how much work needs to be done.
Although we have complete lists for some small class numbers, there are infinitely more inte-
gers with incomplete lists. The bounds can still be improved and more effective algorithms
can be developed for shorter computation times.
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