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1. abstract

In this paper we’ll discuss ordinary generating functions and exponential generating func-
tions. First we’ll show some examples of each and techniques to find explicit functions.
Then, we’ll incorporate calculus into our discussion of generating functions by discussing
the significance of integrating and differentiating generating functions. We’ll then go on
to discuss the multiplication rule of different exponential and ordinary generating functions
and explore connections with the binomial theorem. Finally we’ll show why these functions
are important, showing their application to mathematics through the tangent numbers, the
Bernoulli numbers, the Euler numbers and the Genocchi numbers and interesting combina-
torial interpretations of each of these numbers.

2. Ordinary Generating Functions

Let’s introduce the concept of an ordinary generating function.

Definition 2.1. Given a sequence of numbers (an), the generating function for that sequence
is the function given by the summation

f(x) =
∞∑
n=0

anx
n

Let’s look at some examples of generating functions now.

Example. The sequence (an) = (1, . . . , 1) has the generating function

f(x) =
∞∑
n=0

anx
n =

∞∑
n=0

xn

From the definition of the of a geometric series we get that

f(x) =
1

1− x
.

Example. Similarly, let (an) = (1, 2, 3 . . . , n− 1, n) which gives us the equation

f(x) =
∞∑
n=0

nxn

Now, this sequence seems a bit difficult because it’s not exactly a geometric series. Let’s
try re-writing this in a form that’s more recognizable. Factoring out an x we get that
f(x) = x

∑∞
n=0 nx

n−1. Now, nxn−1 just looks like the derivative of g(x) = xn so this
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means we get our generating function to be f(x) = x
∑∞

n=0 nx
n−1 and then we get that∫ f(x)

x
dx =

∫ ∑∞
n=0 nx

n−1 dx and swapping the integral and summation we get∫
f(x)

x
dx =

∞∑
n=0

∫
nxn−1 dx

This then becomes ∫
f(x)

x
dx =

∞∑
n=0

xn

From our last example we see that summation becomes
∫ f(x)

x
dx = 1

1−x . Then, differentiating
each side we get that

1

x
f(x) =

d

dx
(

1

1− x
) =

−1

(1− x)2

f(x) =
−x

(1− x)2

Example. Another example of a generating function is the generating function for the recur-
rence relation of the Fibonacci sequence where

F0 = 0, F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2

f(x) =
∞∑
n=1

Fnx
n

We know that

F (x) = x+
∞∑
n=2

Fnx
n

F (x) = x+
∞∑
n=2

(Fn−1 + Fn−2)x
n

F (x) = x+
∞∑
n=2

Fn−1x
n +

∞∑
n=2

Fn−2x
n

∞∑
n=2

Fn−1x
n = x

∞∑
n=2

Fn−1x
n−1 = x

∞∑
n=1

Fnx
n = xF (x)

∞∑
n=2

Fn−2x
n = x2

∞∑
n=2

Fn−2x
n−2 = x2

∞∑
n=0

Fnx
n = x2F (x)

F (x) = x+ xF (x) + x2F (x)

F (x)− xF (x)− x2F (x) = x

F (x)(1− x− x2) = x

Hence

F (x) =
x

1− x− x2
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3. Exponential Generating Functions

Now that we’ve seen several examples of ordinary generating functions and how to find
them given their sequences. Now, we’re going to go on to study exponential generating
functions.

Definition 3.1. An exponential generating function of a sequence (an) is a function f(x) of
the form

f(x) =
∞∑
n=0

an
n!
xn

Example. The exponential generating function of the sequence (an) = (1, . . . , 1) is the func-
tion

f(x) =
∞∑
n=0

xn

n!
= ex

We call this function an exponential generating function because with the factorial it
generates exponential functions.

Example.

an = 2n

f(x) =
∞∑
n=0

2n

n!
xn

f(x) =
∞∑
n=0

(2x)n

n!

f(x) = e2x

Example.

an = pn

Where pn is the number of permutations of a set n.
From probability we can deduce that |pn| = n! This means

f(x) =
∞∑
n=0

an
n!
xn

f(x) =
∞∑
n=0

pn
n!
xn

f(x) =
∞∑
n=0

n!

n!
xn

f(x) =
∞∑
n=0

xn

f(x) =
1

1− x
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This essentially means that the exponential generating function for the number of permu-
tations of a set of a size n is the same as the ordinary generating function for the sequence
of {1, 1, . . .}.

Now, let’s generate ex.

Proof.
an = 1 ∀n

This gives us the official exponential generating function of

f(x) =
∞∑
n=0

an
n!
xn

f(x) =
∞∑
n=0

1

n!
xn

Ignoring our knowledge of Taylor Series we can prove that this is the exponential generating
function of ex because

f ′(x) =
∞∑
n=0

1

n!
xn

This means that f(x) = f ′(x) which gives us the differential equation df
dx

= f and then∫
1

f
df =

∫
1 dx

This gives us
ln f(x) = x→ f(x) = ex

�

Let’s now prove the generating functions for sinh x and coshx

Example. Let an = 1+(−1)n
2

f(x) =
∞∑
n=0

an
n!
xn

f(x) =
∞∑
n=0

1 + (−1)n

2 · (n!)
xn

f(x) =
∞∑
n=0

1

2
(
xn

n!
+

(−1)n(x)n

n!
)

f(x) =
1

2

∞∑
n=0

(
xn

n!
+

(−x)n

n!
)

f(x) =
1

2

∞∑
n=0

(
1

n!
+

(−1)nxn

n!
)

f(x) =
1

2

∞∑
n=0

1

n!
xn +

1

2

∞∑
n=0

(−1)n

n!
xn

f(x) =
ex

2
+
e−x

2
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f(x) =
ex + e−x

2
f(x) = cosh(x)

Moving on, we can find the generating function for sinh(x)

Example.

sinh(x) =
ex − e−x

2

sinh(x) =
1

2
(ex − e−x)

sinh(x) =
1

2
(
∞∑
n=0

1

n!
xn −

∞∑
n=0

(−1)n

n!
xn)

sinh(x) =
1

2
(
∞∑
n=0

1

n!
xn − (−1)n

n!
xn)

sinh(x) =
1

2

∞∑
n=0

(
1

n!
− (−1)n

n!
)xn

sinh(x) =
∞∑
n=0

(
1− (−1)n

2 · n!
)xn

Hence, the generating function for sinh(x) is an = 1−(−1)n
2

4. Operations on Exponential Generating Functions

Definition 4.1. Derivative of an Exponential Generating Function Let f(x) be the expo-
nential generating function for the sequence (an)

f(x) =
∞∑
n=0

an
n!
xn

d

dx
(f(x)) =

d

dx

∞∑
n=0

an
n!
xn

f ′(x) =
∞∑
n=1

an
(n− 1)!

xn−1

This is also equivalent to the exponential generating function of (an)n6=0 This is equivalent
to just shifting over the sequence to the left.

Let’s look at an example of this:

Example.

an =

(
1

3

)n
f(x) =

∞∑
n=0

1

3nn!
xn
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f(x) =
∞∑
n=0

1

n!

(x
3

)n
f ′(x) =

∞∑
n=1

an
(n− 1)!

xn−1

f ′(x) =
∞∑
n=1

1

(n− 1)!

xn−1

3n

f ′(x) =
1

3
e

x
3

f(x) = e
x
3

f ′(x) =
1

3
e

x
3

Definition 4.2. Integral of an Exponential Generating Function Let (an)n≥0 be a sequence
of numbers and f(x) =

∑∞
n=0 anx

n∫ x

0

f(t)dt =

∫ x

0

∞∑
n=0

an
n!
xndx

∫ x

0

f(t)dt =
∞∑
n=0

∫
an
n!
xndx

∫ x

0

f(t)dt =
∞∑
n=0

an

∫
xndx

∫ x

0

f(t)dt =
∞∑
n=0

an
n!

xn+1

n+ 1∫ x

0

f(t)dt =
∞∑
n=0

an
(n+ 1)!

xn+1

This is equivalent to shifting the sequence to the right.

Let’s try an example with an exponential generating function.

Example.

f(x) =
∞∑
n=1

3n + 1

n!
xn

∫
f(x)dx =

∫ ∞∑
n=1

3n + 1

n!
xndx

∫
f(x)dx =

∞∑
n=1

3n + 1

(n+ 1)!
xn+1

f(x) = e3x + ex∫
f(x)dx =

e3x

3
+ ex
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Definition 4.3. Multiplication Rule Let A(x) and B(x) be two exponential generating func-
tions such that

A(x) =
∞∑
n=0

an
n!
xn

B(x) =
∞∑
n=0

bn
n!
xn

Now, we define the product of these two functions to be

C(x) = A(x) ·B(x)

C(x) =
∞∑
n=0

cn
n!
xn

cn =
n∑
k=0

(
n

k

)
ak · bn−k

C(x) = A(x)B(x) =
∞∑
n=0

n∑
k=0

(
n

k

)
ak · bn−k

xn

n!

C(x) =
∞∑
n=0

n∑
k=0

ak · bn−k
(n− k)! · k!

xn

Looking at this we see that multiplying two generating function is very similar to the
binomial theorem which can help us understand the mechanics of what is going on when
multiplying power series.

5. Important Exponential Generating Functions

Now, we’ll move on to examples of exponential generating functions that are applicable
to other fields and different areas of mathematics.

5.1. Tangent Numbers. First, we’ll talk about tangent numbers.

Definition 5.1. Tangent Numbers Tangent Numbers are numbers given by the form

Tn =
22n(22n − 1)|B2n|

2n

Here, B2n denotes an even Bernoulli number where a Bernoulli number is defined as follows:

Definition 5.2. Bernoulli Number The Bernoulli Numbers denoted (Bn) are the coefficients
of the exponential generating function for x

ex−1 . In other words,

x

ex − 1
=
∞∑
n=0

Bnx
n

n!

Another way to write the Bernoulli numbers is so that they can be written in terms of the
contour integral

Bn =
n!

2πi

∮
C

z

ez − 1

dz

zn+1

where the given contour is a circle enclosing the origin, with radius less than 2π, and is
traversed in a counter-clockwise direction.
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Moving on, we can find the exponential generating function for the tangent function,
tan(x) which yields us the following.

tan(x) =
∞∑
n=0

(−1)n−122n(22n − 1)B2n

(2n)!
x2n−1

This then further simplifies to

tan(x) =
∞∑
n=1

Tn
(2n− 1)!

x2n−1

And pulling out numbers we see that the exponential generating function for tan(x) can
be written as the following polynomial.

tan(x) = x+
1

3
x3 +

2

15
x5 +

17

315
x7 + · · ·

This then gives us the series for the Tangent Numbers. Now, let’s move on and discuss
another similar sequence of numbers.

5.2. Euler Numbers. Similar to Bernoulli numbers and Tangent numbers, Euler numbers
can also we written as the coefficients for a generating function.

Here, we get that an Euler number is the coefficient of an exponential generating function
for the function 1

cosh(x)
or sech(x).

Definition 5.3. Euler Numbers The Euler Numbers, denoted by En have the form

sech(x) =
∞∑
n=0

En
n!
xn

Following from here gives us the formula that

En = 2nEn(
1

2
)

and here, En(x) are the Euler Polynomials. These polynomials are given by the generating
function

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!

Moving on from Euler Polynomials we can see other properties of Euler numbers which
are extremely useful and interesting.

We can write even Euler Numbers in two very efficient asymptotic sequences.

(1) E2n ≈ (−1)n8
√

n
π
(4n
πe

)2n

(2) E2n ≈ (−1)n8
√

n
π
(4n
πe
· 480n2+9
480n2−1)2n

Furthermore, if we can use another interesting theorem to expand a finite product of Euler
Numbers.

Theorem 5.4. (E − i)n = 0 if n is even , (E − i)n = −iTn+1
2

if n is odd and here the term

Ek is interpreted as |Ek| and

Let’s look at another couple interesting theorems.
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Theorem 5.5. If Ek and Ej are two elements of the sequence En then

Ek ≡ Ej mod 2n

if and only if

k ≡ j mod 2n

And our final theorem for Euler Numbers is courtesy of Shanks.

Theorem 5.6.

E2n = 2 · (−1)n · (2n)!L1(2n+ 1) · ( 2

π
)2n+1

Here, L represents an L function.

Finally, we’ll now begin to talk about our final number sequence related to generating
functions, Genocchi Numbers.

5.3. Genocchi Numbers.

Definition 5.7. Genocchi Number Genocchi numbers are the numbers in the sequence Gn

that satisfy the generating function

2x

ex + 1
=
∞∑
n=1

Gn

n!
xn

We can look at some interesting properties of Genocchi numbers related to Bernoulli num-
bers and Euler polynomials which we talked about earlier. This brings all of the interesting
number sequences together at once.

Theorem 5.8.
G2n = 2(1− 22n)B2n

G2n = 2nE2n−1(0)
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