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Abstract. We give examples of series being evaluated using methods relating to Fourier
series, with a special focus on evaluating even values of ζ using various methods.

1. Introduction

Fourier series provide an extremely powerful method for evaluating many infinite series. In
this article, we start by evaluating series by plugging in values into Fourier series of various
functions in section 2. In section 3, we prove Parseval’s Theorem and use it to evaluate series
such as

∞∑
n=1

sin2(nd)

n2
.

Finally, in section 4, we describe the Poisson Summation Formula and use it to sum series
of the form

∞∑
n=1

1

y2 + n2
.

Recall that the Fourier series representation of a periodic function f(x) is given by the
form:

f(x) =
∞∑
m=0

am cosmx+
∞∑
n=1

bn sinnx,

We determine the coefficients with the following formulas.

ak =
1

π

∫ π

−π
f(x) cos kx dx, a0 =

1

2π

∫ π

−π
f(x) dx.

To compute the b coefficients, we have the following similar formula.

bk =
1

π

∫ π

−π
f(x) sin kx dx.

2. Basic Examples

We can evaluate a lot of infinite series by just plugging numbers into the Fourier series
of common functions. In class, we did this for the periodic functions f(x) = x, x2, x3 on
the interval (−π, π) as well as f(x) = π−x

2
on (0, 2π). We give some more examples here.

The first is a method on evaluating ζ(2m) for all even numbers. This relies on the Fourier
expansion of the periodic version of fm(x) = x2m on (−π, π). The following method is
referenced from [Rob99], with some errors corrected.
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Theorem 2.1. The Fourier series of fm(x) = x2m,m ≥ 1 on (−π, π), extended to be
periodic, is:

x2m = cm,0 +
∞∑
n=1

cm,n cosnx.

where

cm,0 =
π2m

(2m+ 1)
, and cm,n = 2(−1)n(2m)!

m∑
j=1

(−1)j−1π2(m−j)

(2m+ 1− 2j)!n2j

Proof. We directly compute the Fourier Series coefficients. We have that

bk =
1

π

∫ π

−π
x2m sin kx = 0

since x2m sin kx is an odd function. For the constant, we compute

cm,0 = a0 =
1

2π

∫ π

−π
x2m =

π2m

(2m+ 1)
.

Finally, for the cosine coefficients, we use integration of parts twice.

cm,n = ak =
1

π

∫ π

−π
x2m cos kx =

2

π

∫ π

0

x2m cos kx

=
2

π

[(
x2m

sinnx

n

)x=π
x=0

− 2m

n

∫ π

0

x2m−1 sinnx

]
=
−4m

nπ

[
−
(
x2m−1

cosnx

n

)x=π
x=0

+
2m− 1

n

∫ π

0

x2m−2 cosnx

]
=
−4m

nπ

[
(−1)n−1

π2m−1

n
+

2m− 1

n

π

2
cm−1,n

]
=

4m

n2

[
(−1)nπ2m−2 − 2m− 1

2
cm−1,n

]
.

The proof can be then completed with induction to derive the explicit formula for cm,n. �

Now, we can derive a recurrence for even zeta values by plugging in x = π into x2m and
its Fourier Series.

Theorem 2.2. If m ≥ 1, then ζ(2m) = amπ
2m, where

m∑
j=1

(−1)j−1aj
(2m+ 1− 2j)!

=
m

(2m+ 1)!
.

Proof. Plugging in x = π and subtracting the constant on both sides, we have

π2m − π2m

(2m+ 1)
=

2mπ2m

(2m+ 1)
=
∞∑
n=1

(−1)ncm,n

=
∞∑
n=1

2(−1)2n(2m)!
m∑
j=1

(−1)j−1π2(m−j)

(2m+ 1− 2j)!n2j

= 2(2m)!
m∑
j=1

(−1)j−1π2(m−j)

(2m+ 1− 2j)!
ζ(2j).
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Dividing by 2(2m)!,
m∑
j=1

(−1)j−1π2(m−j)

(2m+ 1− 2j)!
ζ(2j) =

mπ2m

(2m+ 1)!
.

The exact format of the theorem can be proven with induction. �

Example. Computing ζ(6) = a3π
6, a1

5!
− a2

3!
+ a3

1!
= 3

7!
, so a3 = −a1

5!
+ a2

3!
+ 3

7!
= 1

945
, which is

correct.

In general, plugging in values into Fourier Series of functions leads to being able to sum
infinite series. For example, the Fourier series of | sin(θ)| is

| sin(θ)| = 2

π
− 4

π

∞∑
n=1

cos 2nθ

4n2 − 1
.

Plugging in θ = π
2
,

∞∑
n=1

(−1)n

4n2 − 1
=

1

2
− π

4
.

3. Parseval’s Theorem

We can evaluate more series by using Parseval’s Theorem.

Theorem 3.1 (Parseval). Suppose that the Fourier series of f is

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

Then

1

π

∫ π

−π
f(x)2 dx = 2a20 +

∞∑
n=1

(a2n + b2n).

Proof. We directly evaluate the integral on the left:∫ π

−π
f(x)2 dx =

∫ π

−π
a20 + 2a0

∞∑
n=1

(an cosnx+ bn sinnx) +

(
∞∑
n=1

(an cosnx+ bn sinnx)

)2

dx

= 2πa20 +

∫ π

−π

(
∞∑
n=1

(an cosnx+ bn sinnx)

)2

dx

= 2πa20 +
∞∑
n=1

∞∑
m=1

∫ π

−π
anam cosnx cosmx+ bnam sinnx cosmx

+ anbm cosnx sinmx+ bnbm sinnx sinmxdx

= 2πa20 +
∞∑
n=1

(a2nπ + b2nπ).
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The last integral was evaluated using the orthogonality relations∫ π

−π
cosmx cosnx dx =


2π m = n = 0,

π m = n 6= 0,

0 otherwise,∫ π

−π
sinmx sinnx dx =

{
π m = n 6= 0,

0 otherwise,∫ π

−π
cosmx sinnx dx = 0.

�

Like before, we can also use Parseval’s Theorem to evaluate ζ(2m). In class, we saw how
to find ζ(4) from ζ(2) by using Parseval’s Theorem on the Fourier series of x2. We can do
something similar for ζ(6) by using Parseval’s Theorem on x3. The Fourier series of x3 on
(−π, π) extended to be periodic is

x3 =
∞∑
n=1

(−1)n+1 2n2π2 + 12 (−1)n

n3
sinnx.

Using Parseval’s Theorem, we have

1

π

∫ π

−π
x6 dx =

∞∑
n=1

(
2 (−1)n+1 n2π2 + 12 (−1)n

n3

)2

.

Evaluating the integral and expanding the right side, we have

2π6

7
=
∞∑
n=1

4n4π4 − 48n2π2 + 144

n6

= 4π4ζ(2)− 48π2ζ(4) + 144ζ(6).

Solving for ζ(6), we get that ζ(6) = π6

945
, which is correct. We can compute all even zeta

values using this method.
We can also find sums of the form

∑∞
n=1

sin2 nd
n2 where 0 < d < π, referenced from [Mat].

We use Parseval’s Theorem on the following extended periodic function f and its Fourier
Series

f(x) =

{
1 if 0 ≤ |x| ≤ d

0 if d ≤ |x| ≤ π
=
d

π
+

2

π

∞∑
n=1

sinnd

n
cosnx.

Applying Parseval’s Theorem, we have that

1

2

(
2d

π

)2

+
∞∑
n=1

4 sin2 nd

n2π2
=

2

π

∫ π

0

f 2(x) dx.

The right side evaluates to 2d
π

, and the left side evaluates to 2d2

π2 + 4
π2

∑∞
n=1

sin2 nd
n2 . Solving for

the sum, we have that
∞∑
n=1

sin2 nd

n2
=
d(π − d)

2
.
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Notably, we can plug in d = π
2

to get that

∞∑
n=1

sin2 nπ
2

n2
=
π2

8
.

Since we know that

sin2 nπ

2
=

{
0 if 2 | n
1 otherwise

,

the series can also be written as

∞∑
k=0

1

(2k + 1)2
=
π2

8
.

4. Poisson Summation Formula

Finally, we’ll show some interesting sums that can be computed using the Poisson sum-
mation formula, which is based on the Fourier transform of a function.

Definition 4.1. The Fourier transform of a function f , denoted f̂(x), is

f̂(x) =

∫ ∞
−∞

e−2πixtf(t) dt.

We’ll ignore the exact hypotheses needed for the Poisson summation formula to be used
for here.

Theorem 4.2 (Poisson Summation Formula). If f is a Schwartz function, then

∞∑
n=−∞

f(x+ n) =
∞∑

n=−∞

f̂(n)e2πinx.

Note that if x = 0,
∞∑

n=−∞

f(n) =
∞∑

n=−∞

f̂(n).

We’ll apply the Poisson summation formula on a function f(x) with a constant a > 0 to
be defined as

f(x) =


e−ax if x > 0
1
2

if x = 0

0 otherwise

.

The Fourier transform can easily be computed:

f̂(x) =

∫ ∞
0

e−2πixte−at dt =
et(−a−2πix)

−a− 2πix

∣∣∣∣t=∞
t=0

=
1

a+ 2πix
.
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We first calculate the left hand side of the Poisson summation formula:
∞∑

n=−∞

f(x+ n) =
1

2
+

∞∑
n=−x+1

e−a(x+n)

=
1

2
+

e−a

1− e−a

=
1 + e−a

2(1− e−a)

=
1

2
coth

(a
2

)
.

On the other side, we have

∞∑
n=−∞

f̂(n)e2πinx =
∞∑

n=−∞

1

a+ 2πin
(cos(2πnx) + i sin(2πnx))

=
∞∑

n=−∞

(a cos(2πnx) + i sin(2πnx))(a− 2πin)

a2 + (2πn)2

=
1

a
+ 2

∞∑
n=1

a cos(2πnx) + 2πn sin(2πnx)

a2 + (2πn)2

Setting x = 0,

=
1

a
+ 2a

∞∑
n=1

1

a2 + (2πn)2
.

Bringing the two sides together, we have

1

2
coth

(a
2

)
=

1

a
+ 2a

∞∑
n=1

1

a2 + (2πn)2
.

Changing variables by letting y = a
2π

, we have

π coth(πy) =
1

y
+ 2y

∞∑
n=1

1

y2 + n2
.

Note that plugging in a = 1 leads to the sum

∞∑
n=1

1

n2 + 1
=

1

2
(π coth(π)− 1).

Although we don’t derive it here, the Poisson Summation Formula can similarly be used
to find that

∞∑
n=−∞

1

(n+ a)2
=

π2

sin2 πa

when a ∈ R \ Z [SS11].
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