FOURIER ANALYTIC METHODS FOR EVALUATING SERIES
ETHAN YANG

ABSTRACT. We give examples of series being evaluated using methods relating to Fourier
series, with a special focus on evaluating even values of ¢ using various methods.

1. INTRODUCTION

Fourier series provide an extremely powerful method for evaluating many infinite series. In
this article, we start by evaluating series by plugging in values into Fourier series of various
functions in section 2. In section 3, we prove Parseval’s Theorem and use it to evaluate series

such as
. sin?(nd)
Do
n=1

Finally, in section 4, we describe the Poisson Summation Formula and use it to sum series

of the form

1
;y2+n2'

Recall that the Fourier series representation of a periodic function f(z) is given by the
form:

o0 o0
f(z) = Z amcosmz + Yy b, sinnz,
m=0 n=1

We determine the coefficients with the following formulas.

1 ¥ 1 s
ar = — f(z) cos kx dz, ag = —/ f(z)dx.
o 2 J_.
To compute the b coefficients, we have the following similar formula.
1 s
by = — f(z)sin kz dzx.
™ —T

2. Basic EXAMPLES

We can evaluate a lot of infinite series by just plugging numbers into the Fourier series

of common functions. In class, we did this for the periodic functions f(x) = z,z% 2* on

the interval (—m,7) as well as f(z) = 5% on (0,27). We give some more examples here.

The first is a method on evaluating ((2m) for all even numbers. This relies on the Fourier

expansion of the periodic version of f,,(z) = z*" on (—m, 7). The following method is

referenced from |[Rob99], with some errors corrected.
1
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Theorem 2.1. The Fourier series of fn(x) = 2™, m > 1 on (—m,7), extended to be
periodic, 1S:

o
" = Cm,0 + Z Cpn,m COS NT.
n=1
where
7T2m m (_1)j—17r2(m—j)

o= and ey = 2(—1)"(2m)! R
em0 = Gy @ Cmn = X )(m)z(2m+1—2])!n2a

j=1

Proof. We directly compute the Fourier Series coefficients. We have that
1 ™

b, = —/ 2™ sinkx = 0

™

—T
since 2™ sin kx is an odd function. For the constant, we compute

™ 2m
1 om 0

). T emr)

Finally, for the cosine coefficients, we use integration of parts twice.

1 ™ 2 ™
Con = A = —/ 2™ cos kx = —/ 2™ cos kx
0

Cm,o = Qo =

™) . T
2 1 =9 4
= — [(me i n:z) _am 2™ Lgin nx]
T n =0 n Jo
-4 r=m 2 —1 ™
S [— <x2m_1_cos n:c) + = / 272 cos n:v}
nmw n =0 n 0
—4m =l 9m —1rx
= - -1 n-l ~Cm—1n
nm {( ) n * n 2" }
4m 2m — 1
— (=1 2m—2 Cone1nl .
et

The proof can be then completed with induction to derive the explicit formula for ¢,,,,. W

Now, we can derive a recurrence for even zeta values by plugging in x = 7 into 2?™ and
its Fourier Series.

Theorem 2.2. If m > 1, then ((2m) = a,, 7™, where

i (=17 a; m
pu 2m+1-25)! (2m+1)!
Proof. Plugging in x = m and subtracting the constant on both sides, we have
2m 2) 2m OO
R ey = e = ) (1) e

2m+1) (2m+1)

(—1)7172m=3)

= Z 2(—1)2n(2m)! ]Z1 (2m +1—2j)In%

(—1)7~1g2(m=J)
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Dividing by 2(2m)!,

zm: (_1)j—17r2(m—j) mﬂ_2m

27]) = ——m.

e @m+1- 1% = G
The exact format of the theorem can be proven with induction. [ |
Ezample. Computing ((6) = azn®, & — ¥ + % = %, soaz = —% + &+ % = 9}75, which is

correct.

In general, plugging in values into Fourier Series of functions leads to being able to sum
infinite series. For example, the Fourier series of |sin(0)] is

2 4 <X cos2nb
in(@)| = — — — .
| sin(6)] - W;ﬂ

4n? — 1

Plugging in 6 = 7,

N |
1

— (="
;Zm?—l N

3. PARSEvVAL’S THEOREM

We can evaluate more series by using Parseval’s Theorem.

Theorem 3.1 (Parseval). Suppose that the Fourier series of f is

flz) =ao+ Z(an cos nx + by, sinnx).

n=1
Then
1 [ >
. / F(2)? do =203+ Y (a2 +B2).
-n n=1

Proof. We directly evaluate the integral on the left:

o0 (0.9} 2
/ f(x)2de = / ag + 2ag Z(an cosnx + by, sinnx) + (Z(an cosnz + by, sin nx)) dx
-7 - n=1 n=1
i e 2
= 2mal + / (Z(an cos nx + by, sin nx)) dx
T \n=1

0o 00 T
= 27ra3 + E E / Ay, @y, COS NT COS MT + by @y, SIN N COS M
n=1lm=17"T

+ a,b,, cosnx sin mx + b,b,, sin nx sin mx dx

= 2mai + Z(aiw + b27).

n=1
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The last integral was evaluated using the orthogonality relations

. 2r m=n=20,
/Cosmxcosnmdm: ™ m=n%#0,

o .
0  otherwise,

T ) ™ m=mn%#0,
sinmx sinnx dr =

0 otherwise,

—T

s
/ cos mx sinnz dx = 0.

—T

Like before, we can also use Parseval’s Theorem to evaluate ((2m). In class, we saw how
to find ((4) from ¢(2) by using Parseval’s Theorem on the Fourier series of 2. We can do
something similar for ((6) by using Parseval’s Theorem on z3. The Fourier series of 2% on
(—m, ) extended to be periodic is
X i (=)™ 2?2 + 12 (—1)"

T’ = 3 sinnx.
n

n=1
Using Parseval’s Theorem, we have

o0

2
IR 2(=1)" 2?12 (—1)"
7T/ xdr = Z ( 3 .

- n=1

Evaluating the integral and expanding the right side, we have

nb

=
= 47*((2) — 4872 (4) + 144 (6).

276 i Anrt — 48n272 + 144
n=1

Solving for ((6), we get that ((6) = 9%65, which is correct. We can compute all even zeta
values using this method.

We can also find sums of the form > >~ Siri—Q"d where 0 < d < 7, referenced from [Mat].
We use Parseval’s Theorem on the following extended periodic function f and its Fourier
Series

1if0<|z|<d  d 2 =~sinnd
JC(:E)—{Oide‘:U|§7T _7r+7rnz:1 - cosSn.

Applying Parseval’s Theorem, we have that
1/2d\> 4sin’nd 2 [T ,
- — —— = — dzx.
2(7?) +; n2m? ﬂ_/of(l')l’

The right side evaluates to 27‘1, and the left side evaluates to 27%2 + % Yoy Sm:—fd. Solving for
the sum, we have that

i sin®nd _ d(r — d)
n2 2

n=1
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Notably, we can plug in d = 7 to get that

> Sin2 % 7T2
2 : 2 Q-

n 8
n=1

Since we know that
. o T {O if 2| n

sin® — = )
1 otherwise

the series can also be written as

2

i;_ﬂ_
k20(2k+1)2 8

4. POISSON SUMMATION FORMULA

Finally, we’ll show some interesting sums that can be computed using the Poisson sum-
mation formula, which is based on the Fourier transform of a function.

Definition 4.1. The Fourier transform of a function f, denoted f (x), is

ﬂ@=[e”mmmt

We’ll ignore the exact hypotheses needed for the Poisson summation formula to be used
for here.

Theorem 4.2 (Poisson Summation Formula). If f is a Schwartz function, then

S farn = Y fmene.

n=—oo n=—oo

Note that if v =0,

Y f)= > fn).

n—=——oo n=—odo

We'll apply the Poisson summation formula on a function f(x) with a constant a > 0 to
be defined as

e ®if x>0
flo)=¢5ifz=0
0 otherwise
The Fourier transform can easily be computed:

t=o00

0 —a —2mix|,_, a+ 2mix
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We first calculate the left hand side of the Poisson summation formula:

o0

Z e—a(az—‘rn)

On the other side, we have

o0

Z f(n)e*mine = Z Hﬁ(cos(?wnw) + isin(2mnx))

n=—oo n=—oo

= (acos(2mnzx) + isin(2mnx))(a — 2min)
B Z a? + (2mn)?

n=—oo

49 Z a cos( 27rmc ) + 2mnsin(2mne)
+ (2mn)?

Setting x = 0,

T a + Z a? + (2mn)?
Bringing the two sides together, we have
L coth ( )=2+2 z
—Co = -
2 a? + (2mn)?
Changing variables by letting y = ==, we have
th(my) ! +2 i !
mcoth(my) = — —_—
vy =+ 2

Note that plugging in a = 1 leads to the sum

Z ! ;(WCOth() 1).

n?+1

Although we don’t derive it here, the Poisson Summation Formula can similarly be used
to find that

0 2

.
(n+a)?  sin’ma

n=—oo

when a € R\ Z [SS11].
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