
Polylogarithms and the BBP Algorithm

Emma Cardwell

March, 2020

1 Introduction to Polylogarithms

The polylogarithm is family of functions of complex numbers. It is sometimes referred to as the

Jonquière function, in honor of mathematician Alfred Jonquière. Special cases of the polylogarithm

function, such as the dilogarithm and the trilogarithm, have been studied by mathematicians since

the 1800s [DLMF, Section 25.12]. The polylogarithm defines a Taylor series expansion for the general

form of logarithms, extended to the complex plane.

Definition 1. The polylogarithm function, Lis(z) is defined as

Lis(z) =
∞∑
k=1

zk

ks
= z +

z2

2s
+
z3

3s
+ ... for z ∈ C, |z| < 1 (1)

This is sometimes referred to as the classical polylogarithm. The classical polylogarithm can also be

expressed with integrals. The integral representations often extend the domain of the classical poly-

logarithm function. They define a radius of convergence for the function that is larger than |z| < 1.

Various integral representations of polylogarithms can be used to describe the Fermi-Dirac distri-

bution (which models the distribution of particles over energy states) and the Maxwell-Boltzmann

distribution (which models the distribution of ideal gas particles’ speeds).

2 Special Cases of the Polylogarithm Function

Natural Logarithm

When s = 1, the polylogarithm function defines a variant of the natural logarithm:

Li1(z) =

∞∑
k=1

zk

k
= z +

z2

2
+
z3

3
+ ... for z ∈ C, |z| < 1

1

Polylogarithms and the BBP Algorithm Emma Cardwell

This sum is equal to the Taylor expansion for − ln(1− x). We can find − ln(1− x) by integrating the

Taylor expansion for 1
1−x :∫

1

1− x
dx =

∫ ∞∑
n=0

xndx for x ∈ R, |x| < 1

− ln(1− x) =

∫
dx+

∫
xdx+

∫
x2dx+

∫
x3dx...

− ln(1− x) = x+
x2

2
+
x3

3
+
x4

4
...

− ln(1− x) =
∞∑
k=1

xk

k
for x ∈ R, |x| < 1

The only issue is, the logarithm function here is defined over R. However, the natural logarithm

function can be extended to the complex plane. For a complex number z = a+ bi we can convert it

to polar form and then use Euler’s formula to change that into an exponential function:

z = |z|(cos θ + i sin θ)

z = |z|eiθ

Where |z| =
√
a2 + b2 and θ =


2 arctan

(
b√

a2+b2+a

)
if a > 0 or b 6≡ 0

π if a < 0 and b = 0

undefined if a = b = 0

Note that, since sine and cosine are periodic with period 2π,

z = |z|(cos θ + i sin θ) = |z|
(

cos(θ + 2πk) + i sin(θ + 2πk)
)

for all k ∈ Z

|z|eiθ = |z|ei(θ+2πk)

This means that, when we take the logarithm of a complex number, we get a multi-valued output:

ln z = ln(|z|ei(θ+2πk)) for all k ∈ Z

ln z = ln |z|+ i(θ + 2πk)

We can restrict the output by choosing our value for θ such that −π < θ < π. This restricts the

function to the cut plane C− (−∞, 0). Now we can restrict − ln(1− z):

− ln(1− z) = −ln|1− z| − iθ z ∈ C− (1,∞)

− ln(1− z) will give us a single-valued output when |z| < 1.

This shows how we can extend the definition of the logarithm function to the complex plane.

2

Polylogarithms and the BBP Algorithm Emma Cardwell

Multiple Polylogarithms

Definition 2. The multiple polylogarithm (also referred to as the multidimensional polylogarithm)

function in a single variable, Lis1,...,sm(z) is defined as

Lis1,...,sk(z) =
∑

n1>n2>...>nk≥1

zn1

ns11 ...n
sk
k

for s1, ..., sk ∈ Z, z ∈ C, |z| < 1 (2)

When k = 1, the multiple polylogarithm function is equivalent to the classical polylogarithm defined

earlier, Lis(z).

We can further extend this by defining the multiple polylogarithm function for multiple variables.

Definition 3. The multiple polylogarithm function for multiple variables, Lis1,··· ,sm(z1, · · · , zk) is

defined as

λ

(
z1, · · · , zk
s1, · · · , sk

)
= Lis1,··· ,sm(z1, · · · , zk) =

∑
n1>n2>···>nk≥1

k∏
j=1

z
nj
j

n
sj
j

(3)

for z1, · · · , zk ∈ C, |z1|, · · · , |zk| < 1, s1, · · · sk ∈ Z

For example,

Li1,3,17(z1, z2, z3) =
∑

n1>n2>n3≥1

3∏
j=1

z
nj
j

n
sj
j

=
∑

n1>n2>n3≥1

(z1)
n1(z2)

n2(z3)
n3

(n1)1(n2)3(n3)17

Here are some terms of Li1,3,17(z1, z2, z3) written out:

Li1,3,17(z1, z2, z3) =
(z1)

3(z2)
2(z3)

1

(3)1(2)3(1)17
+

(z1)
4(z2)

2(z3)
1

(4)1(2)3(1)17
+

(z1)
5(z2)

2(z3)
1

(5)1(2)3(1)17
+ · · ·

+
(z1)

4(z2)
3(z3)

1

(4)1(3)3(1)17
+

(z1)
5(z2)

3(z3)
1

(5)1(3)3(1)17
+

(z1)
6(z2)

3(z3)
1

(6)1(3)3(1)17
+ · · ·

+ · · ·

+
(z1)

4(z2)
3(z3)

2

(4)1(3)3(2)17
+

(z1)
5(z2)

3(z3)
2

(5)1(3)3(2)17
+

(z1)
6(z2)

3(z3)
2

(6)1(3)3(2)17
+ · · ·

+ · · ·

When s = 0, the multiple polylogarithm function for multiple variables is equal to the classical

polylogarithm, Lis(z).

For multiple polylogarithms with multiple variables, an interesting question to ask is how particular

functions can be simplified or represented differently. We can define the depth of a multiple polylog-

arithm to be k, and the weight to be the sum of s1 + · · · + sk. To rephrase our question, we want

to figure out which sums we can reduce by representing them as some combination of lower depth

sums. If the original polylogarithm can be expressed entirely with depth-1 sums, then we say that

it evaluates. There exist sums which can’t be reduced, but it is very difficult to prove irreducibility

[BBP97].

3

Polylogarithms and the BBP Algorithm Emma Cardwell

3 Connections to Other Functions

Relation to the Riemann-Zeta Function

When z = 1, the polylogarithm defines the single-value Riemann-zeta function:

Lis(1) =
∞∑
k=1

1

ks
= ζ(s)

A specific case of both the multiple polylogarithm function and the multiple polylogarithm function

for multiple variables is the multiple zeta function:

Lis1,··· ,sk(1, · · · , 1) = Lis1,··· ,sk(1) =
∑

n1>···nk≥1

1

(n1)s1 · · · (nk)sk
= ζ(s1, · · · , sk)

Relation to the Lerch Zeta Function

The polylogarithm is a special case of the Lerch zeta function.

Definition 4. The Lerch zeta function, φ(x, a, s), is defined as

φ(x, a, s) =
∞∑
n=0

e2nπix

(a+ n)s

for s, x ∈ R, s > 1, and a not equal to a negative integer or zero.

When a = 0, we get the Hurwitz zeta function ζ(s, c) :=
∑∞

n=0
1

(n+c)s , which generalizes the Riemann-

zeta function. When s = 1, the Lerch zeta function is related to polylogarithms. Let z = e2πix. Then,

the Lerch zeta function looks quite similar to the polylogarithm [LL10]:

φ(x, a, 1) =

∞∑
n=0

zn

(n+ 1)s

=
∞∑
n=1

zn−1

nx

4 The BBP Algorithm

The Bailey-Borwein-Plouffe (BBP) computes digits of π in hexadecimal without computing the pre-

vious terms. All BBP-type algorithms are spigot algorithms, which can compute digits of irrational

numbers without calculating the previous digits and many BBP-type algorithms rely on polylogarith-

mic ladders (identities involving polylogarithms).

To demonstrate how BBP-type algorithms work, we can examine a simple BBP-type algorithm for

calculating the digits of log 2 in binary. Borwein and Plouffe noticed that we can use a series expansion

for log 2 (log 2 =
∑∞

k=0
1
k2k

) to calculate its binary digits from any starting position. Let [n] denote

4

Polylogarithms and the BBP Algorithm Emma Cardwell

the fractional part of n. If we wish to find the digits of log 2 after the first d binary digits, we can

calculate [2d log 2]. The first digits of this should be what we’re looking for. We can rewrite [2d log 2]

with our previously defined expansion for log 2:

[2d log 2] =

[
2d ·

∞∑
k=1

1

k2k

]

=

[∞∑
k=1

2d−k

k

]

=

[[d∑
k=1

2d−k

k

]
+

∞∑
k=d+1

2d−k

k

]

=

[[d∑
k=1

2d−k mod k

k

]
+

∞∑
k=d+1

2d−k

k

]
To provide a quick overview of how the algorithm is applied, the first of the two sums in the equation

above has d terms. This can be computed relatively quickly by a computer using the binary algorithm

for exponentiation modulo k. The terms in the second sum quickly become very small (and therefore

negligible). We only need to calculate the first couple of terms, or until the error doesn’t affect the

accuracy we want.

Binary algorithm for exponentiation (exponentiation by squaring): First, lets review what

the binary algorithm for exponentiation is: when computing an, multiplying a by itself n times is

inefficient for large values of n. Instead, we can convert n into its binary representation. We can

separate an such that it is represented by a product of a’s raised to powers of 2. Now, to calculate

an, we only need to compute a1, a2, a4, a8, ...ablog2 nc, and then multiply together the right powers of

a to find an.

Binary algorithm for exponentiation modulo k: Let r = bn mod k, where r, b, n, k ∈ Z+. First,

we define t as the largest power of 2 that is less than n and let r = 1. Then, if n ≥ t, we let r = br

mod k and n = n − t. If, after redefining these parameters, t ≥ 1, then re-define t and repeat this

process. This method of computing exponents allows the calculation to be performed in a shorter

amount of time and also requires less computer memory [Bai06].

Now, the actual BBP algorithm! Here it is:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
This formula was found by a computer running an integer relation-finding algorithm, but we can also

prove it.

Lemma 1. For any j ≥ 1, ∫ 1√
2

0

xj−1

1− x8
dx =

(
1√
2

)j ∞∑
k=0

1

16k(8k + j)

5

Polylogarithms and the BBP Algorithm Emma Cardwell

Proof. To prove Lemma 1, we start with the series expansion of 1
1−u :

1

1− u
= 1 + u+ ... =

∞∑
k=0

uk

let u = x8 :
1

1− x8
=

∞∑
k=0

x8k

multiply by xj−1 :
xj−1

1− x8
=

∞∑
k=0

xj−1+8k

Then, we integrate both sides of the equation above:∫ 1√
2

0

xj−1

1− x8
dx =

∫ 1√
2

0

(∞∑
k=0

xj−1+8k

)
dx

=
∞∑
k=0

(
xj+8k

j + 8k

)] 1√
2

0

=

∞∑
n=0

(
1√
2

)j+8k

j + 8k
− 0

=

(
1√
2

)j ∞∑
n=0

1

16k(j + 8k)

We can use our result from Lemma 1 to prove the BBP formula for π:

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
= 4

∞∑
k=0

1

16k(8k + 1)
− 2

∞∑
k=0

4

16k(8k + 4)

−
∞∑
k=0

4

16k(8k + 5)
−
∞∑
k=0

4

16k(8k + 6)

= 4
√

2

∫ 1√
2

0

x1−1

1− x8
dx− 2(

√
2)4
∫ 1√

2

0

x4−1

1− x8
dx

− (
√

2)5
∫ 1√

2

0

x5−1

1− x8
dx− (

√
2)6
∫ 1√

2

0

x6−1

1− x8
dx

=

∫ 1√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx

To simplify this integral, we can make the substitution u =
√

2x:∫ 1√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx =

∫ 1

0

16u− 16

u4 − 2u3 + 4u− 4
du

We could evaluate this integral using partial fractions, or we can just trust Wolfram Alpha :) Either

way, it evaluates to π [BBP97]. �

6

Polylogarithms and the BBP Algorithm Emma Cardwell

Now, the fun part! Let’s actually find some digits of π! To find the (d + 1)th digit of π, we need to

find [16dπ]. We use 16 instead of 2 here because we want the hexadecimal digit, not the binary digit.

Using the BBP formula, we have:

[16dπ] =

[
16d ·

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)]

=

[
4 ·

∞∑
k=0

16d−k

8k + 1
− 2 ·

∞∑
k=0

16d−k

8k + 4
−
∞∑
k=0

16d−k

8k + 5
−
∞∑
k=0

16d−k

8k + 6

]

Now, we can compute the fractional bits of the four summations separately. For example, looking at

the first summation from the equation above:

4 ·
∞∑
k=0

16d−k

8k + 1
=

[[d∑
k=0

16d−k

8k + 1

]
+

∞∑
k=d+1

16n−k

8k + 1

]

=

[[d∑
k=0

16d−k mod (8k + 1)

8k + 1

]
+

∞∑
k=d+1

16n−k

8k + 1

]
Then, we can use our algorithm for exponentiation modulo k (but hexadecimal instead of binary) to

compute this sum.

There are many BBP-type algorithms to calculate mathematical constants. For example, the following

polylogarithmic ladders can be used to derive different expressions for π. Let w := 1+i
2 and h := i√

2
.

Then, the following are true [Bro98]:

Li1(w)− 1

2
Li1(

1

2
) =

πi

4
(4)

Li1(−w3)− Li1(w
2)− 1

2
Li1(

1

2
) =

πi

4
(5)

Li1(−w5)− 2Li1(w
2)− 1

2
Li1(

1

2
) =

πi

4
(6)

Li1(h
3)− 2Li1(h)− 1

2
Li1(

1

2
) =

πi

2
(7)

They are relatively easy to prove. To prove (4), we can convert the polylogarithm functions into

natural logarithms using Li1(z) = − ln(1− z):

Li1(w)− 1

2
Li1(

1

2
) = − ln(1− w) +

1

2
ln(1− 1

2
)

= − ln(
1− i

2
) + ln

√
2

= − ln(
1− i√

2
)

= − ln(ei(−
π
4
))

=
πi

4

The proofs for the remainder of these polylogarithmic ladders are left as an exercise to the reader.

7

Polylogarithms and the BBP Algorithm Emma Cardwell

References

[Bai06] David Bailey. The bbp algorithm for pi. 10 2006.

[BBP97] David Bailey, Peter Borwein, and Simon Plouffe. On the rapid computation of various

polylogarithmic constants. Mathematics of Computation, 66(218):903–914, Apr 1997.

[Bro98] D. J. Broadhurst. Polylogarithmic ladders, hypergeometric series and the ten millionth

digits of ζ(3) and ζ(5), 1998.

[DLMF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.25 of

2019-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.

Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[LL10] Jeffrey C. Lagarias and Wen-Ching Winnie Li. The lerch zeta function i. zeta integrals.

Forum Mathematicum, 24(1):1–37, Jun 2010.

8

	Introduction to Polylogarithms
	Special Cases of the Polylogarithm Function
	Connections to Other Functions
	The BBP Algorithm

