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Abstract. In this paper, we will be talking about the basic complex analysis knowledge
and some applications in evaluating infinite series with some examples. (Some proofs are
shown.)

1. Introduction

Complex analysis, traditionally known as the theory of functions of a complex variable,
is the branch of mathematical analysis that investigates functions of complex numbers. It
is useful in many branches of mathematics, including algebraic geometry, number theory,
analytic combinatorics, applied mathematics; as well as in physics, including the branches of
hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use
of complex analysis also has applications in engineering fields such as nuclear, aerospace,
mechanical and electrical engineering.

The world of complex numbers is amazing as the real and the complex parts are interre-
lated. For example: a sophisticated Julia set picture:

.

However, in this paper, we will particularly focus on the employment of complex analysis
in evaluating infinite series.

2. complex analysis

2.1. Differentiation.
In this section we define the derivative of a function f : C → C in an analogous manner

to the way in which the derivative of a real function is defined, namely as the limit of a
difference quotient. To this end we begin with a definition of limit.

Definition 2.1. Let f : Ω → C be defined in a neighbourhood of z = z0. The complex
number l is called the limit of f as z approaches z0 if, given ε > 0 there exists δ > 0 such
that

|f(z)− l| < ε whenever 0 < |z − z0| < δ.
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In this case we write limz→z0 = l, Note ε and δ are necessarily real. The function f need not
be defined at z = z0 in order for this limit to exist. Now we are in a position to define the
derivative of a complex function.

Definition 2.2. Let f : Ω → C, where Ω is a domain in C. The function f is said to be
differentiable at z ∈ Ω if the limit

lim
h→0

f(z + h)− f(z)

h
.

exists. This limit is called the derivative of f at z and is denoted by f ′(z). The derivative
for complex differentiable functions satifies the same product, quotient, and chain rules as
the derivative for real differentiable functions. In particular, it follows that if f(z) = zn,
then f ′(z) = nzn−1. The differentiability of f can be expressed simply in terms of the partial
derivatives of the real and imaginary parts of f. Let z = x+ iy and f(z) = u(x, y) + iv(x, y),
where x, y, u, and v are real. Assuming f is differentiable at z0 = x0 + iy0, we will now
evaluate the limit along two different paths in the complex plane. First we take the limit
along the real axis. If h is restricted to have real values then

f(z + h)− f(z)

h
=
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h
,

Taking the limit h→ 0 gives

f ′(z) =
∂u(x, y)

∂x
+ i

∂v(x, y)

∂x
.

Now we will evaluate the limit in ( 3) along the imaginary axis. To this end, we write
h = ik where k is real, which gives

f(z + h)− f(z)

h
=
v(x, y + k)− v(x, y)

k
− iu(x, y + k)− u(x, y)

k
,

Taking the limit as h = ik → 0 gives

f ′(z) =
∂v(x, y)

∂y
− i∂u(x, y)

∂y
,

Comparing the real and imaginary parts of the two expressions for f ′(z) given in equations
above gives the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Theorem 2.3. Let f(z) = u(x, y) + iv(x, y) be continuous in some neigbourhood of z. If f
is differentiable at z, then u and v satisfy the Cauchy-Riemann equations at z.

2.2. Integration.
Let γ be a curve in the complex plane given by z(t) = x(t) + iy(t), where x and y are

smooth real functions of the real variable t in the interval t1 < t < t2. We define the integral
of f along γ by ∫

γ

f(z)dz :=

∫ t2

t1

f(z)
dz

dt
dt,
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where the second integral is understood to mean the integral of the real part of the integrand
plus i multiplied by the integral of the imaginary part. In terms of line integrals, this becomes∫

γ

f(z)dz =

∫
γ

{(udx− vdy) + i(vdx+ udy)}.

We will use the symbol ”
∮
γ

” to denote the integral around a closed curve γ. Unless otherwise

stated, we will assume that γ is traced in the positive (i.e. anti-clockwise) direction.

Theorem 2.4. (The Cauchy-Goursat Theorem) Let f be analytic at all points interior to
and on a closed curve γ. Then ∮

f(z)dz = 0.

Theorem 2.5. (Cauchy’s integral formula) Let f be analytic on the simple closed curve γ
and on its interior. Then

f(z) =
1

2πi

∮
γ

f(ζ)

ζ − z
dζ

Theorem 2.6. Let f and γ satisfy the conditions of theorem above. Then

f (n)(z) =
n!

2πi

∮
γ

f(ζ)

(ζ − z)n+1
dζ.

Proof. Assume that equation above is true for some n = 0, 1, . . . Consider the difference

f (n)(z + h)− f (n)(z) =
n!

2πi

∮
γ

f(ζ)

{
1

(ζ − z − h)n+1
− 1

(ζ − z)n+1

}
dζ

=
n!

2πi
· (n+ 1)h

∮
γ

f(ζ)

(ζ − z)n+2
dζ +O

(
h2
) .

�

2.3. Taylor Series. Let f be analytic in the disk |z − z0| < r for some r > 0. Then

f(z) =
∞∑
n=0

f (n) (z0)

n!
(z − z0)n , for |z − z0| < r.

The series is called the Taylor series for f about z = z0. The Taylor series for f about 0 is
called the Maclaurin series of f .

Proof. For fixed z ∈ B (z0, r) , there is a number r such that |z − z0| < ρ < r. Let γ be the
circle with centre z0 and radius ρ. From Cauchy’s integral formula we have

f(z) =
1

2πi

∮
γ

f(ζ)

ζ − z
dζ.

Now 1
ζ−z = 1

(ζ−z0)−(z−z0) = 1
ζ−z0

1
1−w , w = z−z0

ζ−z0 .

Recall that
1

1−w = 1 + w + w2 + · · ·+ wn + wn+1

1−w ,

sof(z) = 1
2πi

∮
γ
f(ζ)

{
1

ζ−z0 + z−z0
(ζ−z0)2

+ · · ·+ (z−z0)n

(ζ−z0)n+1 + 1
ζ−z

(z−z0)n+1

(ζ−z0)n

}
dζ

.
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Using theorem 2.5, we have

f(z) = f (z0) +
f ′ (z0)

1!
(z − z0) +

f ′′ (z0)

2!
(z − z0)2 + · · ·+ f (n) (z0)

n!
(z − z0)n +Rn,

where

Rn =
(z − z0)n+1

2πi

∮
γ

f(ζ)

(ζ − z) (ζ − z0)n
dζ.

Let M = maxz∈γ |f(z)|. Then

|Rn| ≤
|z − z0|n+1

2π
· 2π · M

(ρ− |z − z0|) ρn
=

M |z − z0|
ρ− |z − z0|

(
|z − z0|

ρ

)n
,

since |z − z0| < ρ,Rn → 0 as n→∞. �

2.4. Isolated Singularities. A Laurent series is a natural extension of a power series that
includes negative powers of the expansion variable. Such series represent functions that are
analytic on annuli.

Theorem 2.7. Any function f that is analytic on the annulus 0 ≤ r1 < |z − z0| < r2 ≤ ∞
has a unique Laurent series expansion,

f(z) =
∞∑

n=−∞

an (z − z0)n ,

where

an =
1

2πi

∮
γ

f(ζ)

(ζ − z0)n+1dζ

and γ is any circle |z − z0| = r such that r1 < r < r2. Furthermore the series converges
uniformly to f(z) on the annuli.

In the above, the coefficient a−1 is called the residue of f at z0.

Definition 2.8. A complex-valued function f is said to have an isolated singularity at z = z0
if there exists ε > 0 such that f is analytic for all z such that 0 < |z − z0| < ε but f is not
analytic at z = z0.

Definition 2.9. Let f have an isolated singularity at z = z0 with Laurent series

f(z) =
∞∑

n=−∞

an (z − z0)n

1. If an = 0 for all n < 0, then f has a removable singularity at z = z0.
2. If there exists a positive integer m such that a−m 6= 0 but a−n = 0 for all n > m, then

f has a pole of order m at z = z0.
3. If there is no positive integer m such that a−n = 0 for all n > m, then f has an essential

singularity at z = z0.
In case 1, the singularity at z = z0 can be removed by extending the definition of f to a

function f̃ which is analytic in a neighbourhood of z = z0 given by

f̃(z) :=

{
a0 z = z0
f(z) z 6= z0

.

Throughout this module, we will therefore remove any removable singularity and treat it as
a regular (i.e. analytic) point.
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Theorem 2.10. (The Residue Theorem) Let γ be a closed contour on which a function
f is analytic. Let f be analytic on the interior of γ except for a finite number of points
z1, z2, . . . , zn Then

1

2πi

∮
γ

f(z)dz =
n∑
j=1

rj,

where rj is the residue of f at zj, j = 1, . . . , n.

3. Evaluating Infinite Series

We will now develop a general technique to evaluate infinite series of the form
∑∞

n=−∞ f(n)
where f(n) is a given function. First let us restrict f(n) to be a meromorphic function (i.e.
analytic in C except for some subset of C ), that is f has a finite number of poles, further
let f be such that none of these poles are integers. Suppose G(z) is a meromorphic function

whose poles are all simple at z ∈ Z, and that the residues are all 1. Therefore the residues
of G(z)f(z) are f(n). Consider the closed curve CN , a square that encloses the points
−N,−N+1, . . . ,−1, 0, 1, . . . , N−1, N, as seen in figure above. (Note: CN can be any closed
curve enclosing these points).

we know, ∮
CN

G(z)f(z)dz = 2πi
∑
{ residues of G(z)f(z) within CN} .

That is to say ∮
CN

G(z)f(z)dz = 2πi
∑
{ residues of G(z)f(z) within CN}

= 2πi
∑N

n=−N f(n) + 2πi
∑
{ residues of G(z)f(z) within CN at poles of f} .

So, if
∮
CN

G(z)f(z)dz has a convergent limit as CN gets large, that is as N →∞, we will
be able to conclude things regarding

lim
N→∞

N∑
n=−N

f(n) =
∞∑

n=−∞

f(n).

Note: If some of f ′ ’s poles are at integers then we can reorder terms such that):∮
CN

G(z)f(z)dz = 2πi
N∑

n=−N

{f(n)|n is not a singularity of f}

+2πi
∑
{ residues of G(z)f(z) within CN at poles of f} π cot(πz)
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satisfies the restrictions on G(z) wonderfully, so let π cot(πz) = G(z). Following from this
we have the summation formula:∑∞

n=−∞{f(n)|n is not a singularity of f} = −
∑
{ residues of π cot(πz)f(z) at singularities of f}

, the very tool we wished to develop.

Theorem 3.1. (Summation Theorem) Let f(z) be analytic in C except for some finite set
of isolated singularities. Also, let |f(z)| < M

|z|k along the path CN (shown in figure above),

where k > 1 and M are constants independent of N. Then we have the summation formula:

∞∑
n=−∞

f(n) = −
∑
{residues of π cot(πz)f(z) at f ′ s poles } .

Example. Prove that
∑∞

n=−∞
1

n2+a2
= π

a
coth(πa) where a > 0.

Proof. Let f(z) = 1
z2+a2

, which has simple poles at z = ±ai Using Remark 2.2, the residue

of π cot(πz)
z2+a2

at z = ai is

lim
z→ai

(z − ai)π cot(πz)

z2 + a2
= lim

z→ai
(z − ai) π cot(πz)

(z − ai)(z + ai)
=
π cot(πai)

2ai
= − π

2a
coth(πa).

Similarly, the residue at z = −ai is − π
2a

coth(πa) Therefore, the sum of the residues is
−π
a

coth(πa). So, by the Summation Theorem we have

∞∑
n=−∞

1

n2 + a2
= −

(
− π

2a
coth(πa)

)
=

π

2a
coth(πa).

�

Example. Prove that
∑∞

n=1
1

n2+a2
= π

2a
coth(πa)− 1

2a2
where a > 0.

Proof. Consider the following rewrite of example above, where 1
a2

= f(0) :

∞∑
n=−∞

1

n2 + a2
=
π

a
coth(πa),

−1∑
n=−∞

1

n2 + a2
+

1

a2
+
∞∑
n=1

1

n2 + a2
=
π

a
coth(πa)

2
∞∑
n=1

1

n2 + a2
+

1

a2
=
π

a
coth(πa)

,

since f is even. Therefore, we have

∞∑
n=1

1

n2 + a2
=

1

2

(
π

a
coth(πa)− 1

a2

)
=

π

2a
coth(πa)− 1

2a2
.

�

Example. Prove that
∑∞

n=1
1
n2 = π2

6
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Proof. Let f(z) = 1
z2
· cot(z) has a simple pole at z = 0 because tan (z) has a simple zero

there. If the Laurent expansion is cot(z) = b1
z

+ a0 + a1z + · · · , then(
1− z2

2!
+
z4

4!
− · · ·

)
=

(
z − z3

3!
+
z5

5!
− · · ·

)(
b1
z

+ a0 + a1z + · · ·
)
.

If we multiply, collect terms and then equate coefficients we find that b1 = 0, a0 = 0 and
a1 = −1

3
. Thus,

π cot(πz)

z2
=
π
(

1
πz
− πz

3
+ · · ·

)
z2

=
1

z3
− π2

3z
+ · · · .

Hence the residue of π cot(πz)
z2

at z = 0 is −π2

3
.z = 0 is the only singularity of f so the

summation formula tells us

lim
N→∞

N∑
n=−N

1

n2
=
π2

3
,

lim
N→∞

(
−1∑

n=−N

1

n2
+

N∑
n=1

1

n2

)
=
π2

3
,

and because f is even, i.e. 1
(−n)2 = 1

n2 , we see that

lim
N→∞

2
N∑
n=1

1

n2
=
π2

3
,

lim
N→∞

N∑
n=1

1

n2
=
π2

6
.

So we can conclude that
∞∑
n=1

1

n2
=
π2

6
.

�
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