ARITHMETIC-GEOMETRIC MEAN

ALAN LEE

1. SUMMARY/BACKGROUND

Most people are very comfortable with the geometric and arithmetic means due to their
secondary education, but little have explored the concept of the arithmetic-geometric mean,
and how it can be used to explore surprisingly related topics in math. The arithmetic-
geometric mean first appeared in famous mathematicians such as Lagrange and Gauss’ pa-
pers during the late 18th century.

Throughout this paper, we will define and prove the existence of the arithmetic-geometric
mean as well as prove a few statements involving them. You may be surprised to see what
relation the arithmetic-geometric mean has with elliptic integrals and yet another approxi-
mation for 7.

2. DEFINITION AND EXISTENCE

Definition 2.1. Take two positive real numbers (not necessarily distinct) ag and by.
Define the recurrence relation such that for all n > 0 and n € N,

a, + by,
2

Ap41 =

and

bn+1 =\ a bn

The arithmetic-geometric mean of the two numbers ay and by is equal to

lim g, = lim a,.
n—oo n—oo

Proof of Existence. For any two positive real numbers a and b, it is known that by the
Arithmetic Mean - Geometric Mean (AM-GM) Inequality, “T*b > vab. Thus, as defined
above, b, > a, for all nonnegative integers n. This in turn implies that

bn—l—l = \/bnan > \/bnbn = bn

Since the sequence b; is monotonically increasing, but is bounded by max (ag, by), by the
monotone convergence theorem, the sequence must converge. This also allows for there to
exist a constant g such that

lim b, = g.

n—00
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Now that the convergence of {b;} is known, this can be used to compute lim,,_,., a, as
such:

2 : 2 2

. . by limy, 500 by g

lim a, = lim = — =—=9q
n—o0 n—o0 bn hmn%oo bn g

Thus, since both {a;} and {b;} converge to the same limit, namely the arithmetic-geometric
mean, its existence has been proven. The arithmetic-geometric mean of x and y from now
on will be denoted as M (x,y).

O

3. PROPERTIES/ THEOREMS

Theorem 3.1. For all positive constants ¢, we have (cz,cy) = ¢M (z,vy) .

Proof. The following statement is pretty obvious (assume d > 0; it follows simply from
manually computing the arithmetic and geometric means of a,, and b,,):

a4y = de by = dy —> anyy = d <x;y> by = do/TT.

This implies the following:

AM(dx, dy) = dAM(z, y)

and

GM(dz, dy) = dGM(z,y).

Since the arithmetic-geometric mean (AGM) is simply repeated iterations of the arithmetic
and geometric means, and both functions satisfy d- f(x,y) = f(dz,dy)), the AGM must also

satisfy this property, thus completing our proof.
OJ

Definition 3.2. The complete elliptic integral of the first kind is defined as

z do
K = [ _
0 1 — k?sin” ()

where 0 < k < 1. If £ =1, we get oo.

Theorem 3.3. For the Arithmetic-Geometric Mean function M (z,y), we have the fol-
lowing identity:

™ 2 de
M (z,y :—+/ .
) 2 0 \/x2cos?f + y?sin® 6

Proof. The following proof was utilized by Gauss and is due to [Cox97].

Let us define the function I to be the following:
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2 do
Iew)= [ —.
0 \/a2cos?f + y?sin?6
Additionally, let z < y be constants and let x; and y; be the arithmetic and geometric
means of z and y, respectively. Finally, define another variable #" such that

21 sin ¢
(z+y) + (z —y)sin®0"
For sake of simplicity, set m equal to

sinf =

(z+y) + (z—y)sin® 0.
Before directly approaching the theorem, we will first show two proofs of equivalences that
are necessary to prove the theorem, namely

2cos 0'\/22 cos? ' + y? sin’ ¢/
m

cosf =

and

a2 0t
— (x — 0
\/x2c0829+y2sin29:x~x+y (z = y)sin .
m

To prove the first one, we square the equation we have for sin 6.

) 2z sin ¢’
sinf = .
m
. 422 sin’ @’
sin® 0 = ————.
m
422 sin’ ¢’

00829:1—sin29:1——2—
m

22+ 2ry + 12 + 2 (z +y) (v — y)sin? @ + 2?sin* 0 — 2xy sin® @' + y? sin* @' — 4% sin? ¢/
m2

a? + 2zy + y? + 2 (2? — y? — 22%) sin® @' + 2?sin® ¢ — 2zysin? @ + y?sin' 0
m? B

22+ 2y + 9% — 2 (2% +y?)sin? @' + 22 sin @' — 22y sin? O + y? sin? 0 B
. —

m

x? (1 — 2sin? @ + sin? 9) + 2y (1 — sin* 9’) + 9/ (1 — 2sin? @ + sin? 9’)

m2

22 (1 —sin®0)" + 3% (1 - sin?@)” + 22y (1 +sin2@’) (1 - sin®0’)
2

m

2% (cos? 0')° + y? (cos® 0)? + 2xy (1 + sin2 @) (cos? @) B
2

m



4 ALAN LEE

cos? '

e (2% cos® @' + y? cos® 0 + 2zy (1 +sin*0')) =

- (2% cos® 0 + y? cos® ' + 2xy cos® 0 + daysin®§') =

4

4 cos® 0 (x2 cos? 0 + 2zy cos? 0’ 4 y? cos? 0’
m2

+ 2y sin? 9’) =

m

4 2¢ 2
COS2 : ((m ;— y> cos® 0 + (y/xy)” sin’ 6’) .

Now we take the square root to get our desired equality:

dcos? ¢ ?
cosf = sz ((x ;— y> cos2 0’ + (y/zy)” sin’ 6’) =

m2

T 2 .
2 cos 9/\/(%)2 cos? 0/ + (/zy) " sin” ¢ _ 2cos0'\/x}cos? 0 + y? sin? 0/
m B m '
For the second equality, we just substitute are values for sin? @ and cos? 6.

472 ¢in® ¢’

sin®f = 5
m

22+ 22y +y? — 2 (22 + y?) sin? @ + 2%sin* 0 — 2y sin @' + y? sin* ¢’

cos? 6 = 5
m

\/352 cos? 6 + y2sin? 0 =

\/x‘* + 223y + 22y% — 2 (24 + 222) sin® @ + 24 sin* @' — 223y sin* O + 222 sin* O n 4:2y? sin? ¢/ B
m? m?

\/x4 + 223y + 2%y? — 2 (z* — 2%y?)sin® 0 + 2t sin 0/ — 223y sin? 0/ + 22y2sin’ @'

m2

Ry + 2zy + 2 — 2 (22 — y?)sin? @ + 22sin? @ — 2xysin @ 4+ y2sin? ¢’ =
m

%\/(95 +1)’ =2z +y) (z —y)sin® @ + (z —y)* (sin? )" =

T

5\/((1' +y) — (z—y)sin?0)” =

v4+y— (z—y)sin® ¢
x- :
m
Now that we have our two equalities, we differentiate both sides of our equation for sin 6.
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d , . d 2x sin &’
— (sinf) = — —— | .

do o’ \ (x +y) + (x — y)sin“ ¢’
We can simply use a calculator for this; since x and y are treated as constants, our result

1s
2z (cos 0 (z +y +sin* 6 (z — y)) — 2sin® @' cos ¢’ (z — y))
cosf = 5 .
m

We can equate this result with our expression for cos 6:

22 (cos @' (z 4y +sin® 0 (x —y)) — 2sin* @' cos @' (x —y))  2cosf'\/x}cos? & + yisin® &/
- .

m2
Dividing both sides by 2%59/ gives us
z(zx+y+sin®d (x —y) —2sin® 0 (z —
( 4 (z—y) ( y)) = \/:U% cos? § + y?sin? @',
m
Simplifying a little more, we have

z(zv+y—sin’@ (z —
(r+y (z—y)) = \/x% cos? 0/ + y? sin® 0.

m
The left of the side of the equation (due to our second proven equation) is

.
rty—(r—y)sin6 \/x2c0829’+y25m29"
m

Therefore, we conclude that

\/x2 cos? 0 + y?sin® ¢ = \/x% cos? 0’ + y?sin® @'

Now we can use this equivalence to show that
I(z,y) =1 (21,y1) = I (22,0) = ...
If we continue with this iteration until its limit, we have

I(z,y) = lm (2, y,) = T(M (2,y), M (2,9)).

2 df B
\/M (z,y)* cos? 0 + M (z,y)*sin? 6

I<M<a:,y>,M<x,y>>=/0

™

/’5 a9
o M(z,y) 2M (z,y)

Thus,
T

do B
0+ y2sin?0 2M (2,y)

us
/2
0 /22 cos?

Some manipulation of both sides gives us our desired result
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M (x y)—ﬁ*/ i
7 2 " Jo \/a22cos? 0+ y?sin6

OJ

Proposition 3.4. For the Arithmetic-Geometric Mean function M (z,y) and the complete
elliptic integral of the first kind function K (k) we have the following identity:

2M (a,b
Proof. The following proof in part is due to |Gil].

an ):Kem).

We start out with the following equality:

T ] do

2M (a,b)  Jo VaZcos?0 + b2sin® 6
We can manipulate the right hand side to get the following.

/ o B / de _
o Va2cos?0 + b2 sin’ 6 0 a\/cos20+%sin29

/ \/1 EELr /\/1

117( (EM) .

a a
Returning to our original equation, we have

T _lg (1m>

2M (a,b) a a

am 1
_ar 2VaZ 2
2M (a,b) K(a ¢ b)‘

O
Now that we have a working result, we can try out a few examples.

1. If a = b # 0 we have

2. We can try finding the arithmetic-geometric mean of 1 and 0:
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(1,1)

| |
Figure 1. AGM of 1 and x graphed on Cartesian Plane

CL():l,bO:O.
1

al—ﬁ,blzo
1

&Q—Z,bgzo

We notice that the arithmetic-geometric mean will be equal to 0 since the geometric
mean(b;s) is always 0. If we plug in a = 1 and b = 0, we get

T 1
— =K =V12-02]).
2M (1,0) (1 )

™

— K (1).

0
Both sides tend toward oo, as expected.

3. We can also graph the arithmetic-geometric mean of a and b. We use the direct result
of Theorem 3.3,

T / df
2 " Jo /22cos?0+y2sin? 6
Figure 1 shows the graph of the the arithmetic-geometric mean of 1 and x. Notice that
the graph is between the two equations y = £i! (the arithmetic mean) and y = /= (the
geometric mean). The first number in our AGM need not be 1; we can easily adjust this

number using Theorem 3.1 while dividing the second number accordingly. For instance, to
find the AGM of 3 and 4, we can compute the following:

M (z,y)

4
3M (1, §> = M (3,4) ~ 3.482.

4. In fact, we can extend our graph from (3) to the 3D space, so that we can set
z =M (z,y). Figure 2 shows this result.
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(0,0,10)

(10,0,0)

Figure 2. AGM of x and y in 3D Space

We now proceed to our final interesting result using the arithmetic geometric mean, which
is an approximation for 7.

Theorem 3.5.

£ (1.25))

B EE) ST

where ¢ = a? — b2.

Before we proceed with the proof of Theorem 3.5, let us prove some intermediate results.
All following propositions and proofs are due to |[Mil19].

Proposition 3.6. Denote a function L such that

jus 2 0
L(a,b) = / ) cos do
o Va2cos?f + b2sin’ 6
Then the function L satisfies the following properties:

(1) L(b,a) + L(a,b) = I(a,b)

(2) L(b,a) — L(a,b) = =2 - L(by, a1)

a+b

where the function I, as mentioned previously, is the following:

2 d
I (z,y) = —.
0 \/x2cos?f 4 y?sin? 6

Proof.
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(1) can be proved by substituting #" = 7 —6. Then we have cos ¢’ = sin  and sin 6" = cos 6,
which yields the following equations:

cos* 0 sin® 0’
L(b,a :/ d@z/ do’.
(b.0) o Vb2cos20 + a?sin’ 6 0o Vb2sin? @ + a2 cos? 6’
Since sin? + cos? = 1, we have

jus .
2 sin? 0 + cos? 6

o VaZcos?f + b2sin’ 6
For the second equation we start by substituting ¢t = btan#f. Our substitution is then

L(b,a) + L(a,b) = 9 =1 (a,b).

0 = arctan( ) — df = (t)QH dt = 57 +b2 ——=dt. Additionally, we have b;ﬁ = = m = cos? 0
5
and % =1 — cos? § = sin? §. Putting all of it together, we have the following:
a b / b2+t2 / b2+t2 e dt
2 2 2 2) (2 2)
\/a2 b2+t2+b2 thth t+b \/t—i—a (82 +5)

We can do the same for calculating L (b, a), simply replacing all “b”s with “a”s and vice
versa. Therefore, we have

b2
L(b,a) — L(a,b) Fir — pie
\/t2—|—a2 ) (12 4+ b?)

With some simplification we have

a2 2 AW+ - (@) a0 (a2 =08

b2+ 12 b2+ ¢2 (a® +t2) (b* + t2) (a® 4+ 12) (b2 +12)  (a®+t2) (b2 +12)
Thus, we can rewrite our difference of functions as

b2

L(b,a) — L(a,b) Fie — i dt = /OO @-e 4
\/t2—|—a ) (12 + b?) 0 (124 a2)? (12 + b?)2

Now, set x = % ( — %’) and let

oy & —I—aiz(t %)

Substituting in x for our expression (dt = ﬁdw), we have

> (a* — b)) t? > (a* — b°) t? t
3 gdt = 3 3’ dx =
0 (124 a2)2 (124 12)? —oo (24 a2)2 (22 + b2)2 Va?+ab

/°° (> — W) dw
fmf(ic)%\/m

Now we have

(t2 + CLQ) (t2 + b?) 2b2 2b2

flz) = 2 = 2+aq +b2+t—: 2ab—|—t——|—a 2412ab+b* = (27)*+(a+b)>.
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Thus (letting a; = “H’ and by, = vab),

L(b,a) = L(a,b) = /oo ((22)* + (a+1b)*)* - Va2 + ab
o o0 dx 3 _
( )/ws(x2+(“7“’)2)2'm
a2 — b2 / dx _
8 S (a2t ad)? 2

2

a“® — b2 /oo al—f—ledx
8a? J_ (22 + az)% TR

a —b2 / 2+az2d'x
8a? V@t ad) - (22 + 7))
a’ — b? (a—b)(a+b) a—>b
4@% ( laa’1> <a+b)2 ( l7al) CL+b ( 1,(11)
Thus we have proven that
(ba) ~ L{a,b) = “=2 - L (b, a)
a a, - a+b 1, Q1

O

Proposition 3.7. Denote S as the following:

oo
§ 27 ¢
2 ¢
J=1
where ¢2 = a? — b2. Then we have

2¢5L (a,b) = (g — S) I (a,b).

Proof. We have 4 (a3 —b?) = 4 (GTH’) — dab = (a+b)* — 4ab = (a — b)*, which can be
used in the simplification of this expression (while using the results of Proposition 2.6):

4 (CL? — b%) L (bl,al) =

((I — b)2L (bl,al) =
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(a* = %) - (2L (b,a) — I (a,b)).

Rewriting a? — b} as ¢? and a? — b? as ¢2, we have
4¢3 - L (by,a1) = cg - (2L (b,a) — I (a, b))

2¢2 - L(bya) —4c} - L(by,a1) =cg-1(a,b).
This also works for all 7 € N:

2¢ - L(bj,a5) — 4cfyy - L (bjsr, ajin) = ¢ - 1 (a;,05).

Multiplying by 2/ and noting that I (a;,b;) = I (a,b) from Theorem 3.3, we see that

27 L(byya) =272y - L(bjer, ajn) =2 - - I (a,h).

Adding the equations for 0 < j < n gives us

Z 2‘7+1 2 bj, CL] Z 2j+2 ?Jrl (bj+1, Clj+1> = Z 2j . C? -1 (CL, b)
7=0

By shlftlng the index k = 7 + 1 of the second sum we obtain

n n+1

D 2 Db ) = Y 25 L (b, ax)
=0 k=1
Now we can cancel terms by telescoping our previous equation:

n n

2@ L(by,a;) =Y 2y Dby, a501) =
=0 =0
n+1

Z 23 L(by,ay) Z 2R+ 2 L (by, ax) Z 27

20+1 . C(Q) - L (b(), ao) — 2n+2 . 6721-1—1 - L ( n+1, an—l—l Z 2]
Now we observe that

2 2 2 o
Cn+1 - a’n+1 - bn+1 —

nt b\’
(3% -

a? + 2a,b, + b2 — 4a,b,
I =

(an - bn)2 _ Qp — bn . (CL2 o bz) _ ap — bn . C2
4 4(ap+0b,) " " 4(an+b,) ™

The final result is less than % because b, > 0 — % < 1, and thus we have
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2
C
2 n
Cn+1 < Z

We can extend this to see how ¢2,; < 47" '¢}. Additionally, since L (byi1,an41) +
L(ans1,bn11) = I (bpy1,any1) from Proposition 3.6, and both values on the left hand side
are positive, we have

L (bn+17 Cln+1) < I (bn+17 an+1) =71 (b, a) .
Therefore, we have

222 Dby, Gngr) < 2" 472 T (bja) =273 I (b,a).

Therefore, for n — oo we lose our second term (it tends towards 0) and our equation
becomes

201 - L(bo,ap) — lim (27722, - L (bng1, ans1)) = Z 27 . c? -1 (a,b)
=0

n—o0

2-c2-L(ba)= iw‘-(g-[(a,b) = (g +5)-1(a,b).
Finally, using Proposition 3.6’s [iz, a) = I (a,b) — L (a,b) once again we have
2-¢5- L(bya)=(c§+5)-1(a,b)
2-¢g- (I(a,b) — L(a,b))=(cg+95)1I(a,b)
2-¢-1(a,b)— (cg+S)-1(a,b)=2-¢5-L(a,b)

(§—5)-I(a,b)=2-c-L(a,b).
0

Proposition 3.8. The following functions and their properties will prove very useful to
us in the proof of Theorem 3.5:

The Gamma Function T'(x) = [;°7t"7" - e~'dt satisfies for Re(z)> 0:

MNzx+1)=a I'(z)

and

The Beta Function B (u,v) = fol v~ (1 —t)""" dt satisfies for Re(u)> 0 and Re(v)> 0:

[(u) - (v)

B (u,v) = Twtv)
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These proofs involve matrices and integration by parts, something we are not very inter-

ested in right now. As a result, we will be skipping the proofs.
O

Proposition 3.9.
L<\/§,1> -J(\/§,1) - %.
Proof. We notice the following due to the property sin? + cos? = 1:

(\/5 1) B 3 cos? 0dp B T cos?0dh
’ 0 V2cos26 + sin? 6 o V1+cos?f

2 do do
1(v2,1 _/ _/ S
( ) 0 V2cos26 + sin’ 6 o V1-+cos2f
—dxr .

Next, if we substitute x = cos 6, we have 6§ = arccosz — dfl = Wit

V31) = g(:os.2¢9d€_0 x? —dr
’ V14 cos?2f L V142 J1—22 0o V1—zxt

2 db 0 1 - ! T
I(\/§,1>=/ —:/ . :/_
o V14 cos?2é 1 V1I+22 V1 —22 0o V1—at

Now for another substitution, this time x = ti. Then dr = ;llt_%dt:
dt 11 1 1 31
= [ ~tit.(1-t)2dt=--B(>,=].
/ \/1—:1:4 /\/1—t At /04 =) 4 (4 2)

1 1 1
dx 1 dt 1 1 11
1>:/_:/_._:/_.t4—1.1_t (L)
o V1—at o VI—1 ati 0 4 ( ? 4 472
Now with the contents of Proposition 3.8, we obtain the following:
1 31\ 1 11 1 T3)r 1 T(Hr(d
p(var)r(vir) =t (31) Lp( )L (DrG) 1 THrG) _
4 4'2) 4 4’2 4 T (3 4 T3
r(3)

N[

[u—
|
—~
DO |—
~—
[\o}
=
—~
N
~—
—_
N

Bl

(1)

™
1 .

=
==

O
Now we finally can prove our theorem with the aid of all the propositions we have.
Proof of Theorem 3.5. Note that both functions L and [ satisfy the following property:

3 do 1
I (ma,mb) = =—"-1(a,b
( ) vVm2a2cos2 0 + m2b2sin0  |m| (,0).
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We can use this property to see why I( ) V2.1 (\/_ 1) and L ( %) =2
(\/_ , 1). Multiplying together and applying Proposition 3.9 gives us

1(15) (1) = vEr (Vaa)vaL (var) =21 (Var) o (var) =25 = 7.

Next, we use Proposition 3.7:
(g —S)-I(a,b)=2-c-L(a,b)

(cg—S)-I(a b’ =2-c2-L(a,b)-1I(a,b).

Plugging in a = 1 and b = 7 and noting that ¢3 = 1% — \%2 = % we have

(o) () 21 ) o)+

Remembering that we proved in Theorem 3.3 that

ro |
B

T

2-M(a,b)’

(5-5)-1(055) -3
(%) oy E

We can rearrange a bit and also note that S = » 7%, 2/ - c3:

I(a,b) =

we get the following:

1 2 T
(5_5)'44\4(1, )2_2
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