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1. Summary/Background

Most people are very comfortable with the geometric and arithmetic means due to their
secondary education, but little have explored the concept of the arithmetic-geometric mean,
and how it can be used to explore surprisingly related topics in math. The arithmetic-
geometric mean first appeared in famous mathematicians such as Lagrange and Gauss’ pa-
pers during the late 18th century.

Throughout this paper, we will define and prove the existence of the arithmetic-geometric
mean as well as prove a few statements involving them. You may be surprised to see what
relation the arithmetic-geometric mean has with elliptic integrals and yet another approxi-
mation for π.

2. Definition and Existence

Definition 2.1. Take two positive real numbers (not necessarily distinct) a0 and b0.
Define the recurrence relation such that for all n ≥ 0 and n ∈ N,

an+1 =
an + bn

2
and

bn+1 =
√
anbn.

The arithmetic-geometric mean of the two numbers a0 and b0 is equal to

lim
n→∞

gn = lim
n→∞

an.

Proof of Existence. For any two positive real numbers a and b, it is known that by the
Arithmetic Mean - Geometric Mean (AM-GM) Inequality, a+b

2
≥
√
ab. Thus, as defined

above, bn ≥ an for all nonnegative integers n. This in turn implies that

bn+1 =
√
bnan ≥

√
bnbn = bn.

Since the sequence bi is monotonically increasing, but is bounded by max (a0, b0), by the
monotone convergence theorem, the sequence must converge. This also allows for there to
exist a constant g such that

lim
n→∞

bn = g.
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Now that the convergence of {bi} is known, this can be used to compute limn→∞ an as
such:

lim
n→∞

an = lim
n→∞

b2n+1

bn
=

limn→∞ b
2
n+1

limn→∞ bn
=
g2

g
= g.

Thus, since both {ai} and {bi} converge to the same limit, namely the arithmetic-geometric
mean, its existence has been proven. The arithmetic-geometric mean of x and y from now
on will be denoted as M (x, y).

�

3. Properties/Theorems

Theorem 3.1. For all positive constants c, we have (cx, cy) = cM (x, y) .

Proof. The following statement is pretty obvious (assume d ≥ 0; it follows simply from
manually computing the arithmetic and geometric means of an and bn):

an = dx, bn = dy =⇒ an+1 = d

(
x+ y

2

)
, bn+1 = d

√
xy.

This implies the following:

AM(dx, dy) = dAM(x, y)

and

GM(dx, dy) = dGM(x, y).

Since the arithmetic-geometric mean (AGM) is simply repeated iterations of the arithmetic
and geometric means, and both functions satisfy d ·f(x, y) = f(dx, dy)), the AGM must also
satisfy this property, thus completing our proof.

�

Definition 3.2. The complete elliptic integral of the first kind is defined as

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 (θ)

.

where 0 ≤ k ≤ 1. If k = 1, we get ∞.

Theorem 3.3. For the Arithmetic-Geometric Mean function M(x, y), we have the fol-
lowing identity:

M (x, y) =
π

2
÷
∫ π

2

0

dθ√
x2 cos2 θ + y2 sin2 θ

.

Proof. The following proof was utilized by Gauss and is due to [Cox97].

Let us define the function I to be the following:
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I (x, y) =

∫ π
2

0

dθ√
x2 cos2 θ + y2 sin2 θ

.

Additionally, let x < y be constants and let x1 and y1 be the arithmetic and geometric
means of x and y, respectively. Finally, define another variable θ′ such that

sin θ =
2x sin θ′

(x+ y) + (x− y) sin2 θ′
.

For sake of simplicity, set m equal to

(x+ y) + (x− y) sin2 θ′.

Before directly approaching the theorem, we will first show two proofs of equivalences that
are necessary to prove the theorem, namely

cos θ =
2 cos θ′

√
x21 cos2 θ′ + y21 sin2 θ′

m
and √

x2 cos2 θ + y2 sin2 θ = x · x+ y − (x− y) sin2 θ′

m
.

To prove the first one, we square the equation we have for sin θ.

sin θ =
2x sin θ′

m
.

sin2 θ =
4x2 sin2 θ′

m2
.

cos2 θ = 1− sin2 θ = 1− 4x2 sin2 θ′

m2
=

x2 + 2xy + y2 + 2 (x+ y) (x− y) sin2 θ′ + x2 sin4 θ′ − 2xy sin4 θ′ + y2 sin4 θ′ − 4x2 sin2 θ′

m2
=

x2 + 2xy + y2 + 2 (x2 − y2 − 2x2) sin2 θ′ + x2 sin4 θ′ − 2xy sin4 θ′ + y2 sin4 θ′

m2
=

x2 + 2xy + y2 − 2 (x2 + y2) sin2 θ′ + x2 sin4 θ′ − 2xy sin4 θ′ + y2 sin4 θ′

m2
=

x2
(
1− 2 sin2 θ′ + sin4 θ

)
+ 2xy

(
1− sin4 θ′

)
+ y2

(
1− 2 sin2 θ′ + sin4 θ′

)
m2

=

x2
(
1− sin2 θ′

)2
+ y2

(
1− sin2 θ′

)2
+ 2xy

(
1 + sin2 θ′

) (
1− sin2 θ′

)
m2

=

x2 (cos2 θ′)
2

+ y2 (cos2 θ′)
2

+ 2xy
(
1 + sin2 θ′

)
(cos2 θ′)

m2
=
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cos2 θ′

m2
·
(
x2 cos2 θ′ + y2 cos2 θ′ + 2xy

(
1 + sin2 θ′

))
=

cos2 θ′

m2
·
(
x2 cos2 θ′ + y2 cos2 θ′ + 2xy cos2 θ′ + 4xy sin2 θ′

)
=

4 cos2 θ′

m2
·
(
x2 cos2 θ′ + 2xy cos2 θ′ + y2 cos2 θ′

4
+ xy sin2 θ′

)
=

4 cos2 θ′

m2
·

((
x+ y

2

)2

cos2 θ′ + (
√
xy)2 sin2 θ′

)
.

Now we take the square root to get our desired equality:

cos θ =

√√√√4 cos2 θ′

m2
·

((
x+ y

2

)2

cos2 θ′ + (
√
xy)2 sin2 θ′

)
=

2 cos θ′
√(

x+y
2

)2
cos2 θ′ +

(√
xy
)2

sin2 θ′

m
=

2 cos θ′
√
x21 cos2 θ′ + y21 sin2 θ′

m
.

For the second equality, we just substitute are values for sin2 θ and cos2 θ.

sin2 θ =
4x2 sin2 θ′

m2
.

cos2 θ =
x2 + 2xy + y2 − 2 (x2 + y2) sin2 θ′ + x2 sin4 θ′ − 2xy sin4 θ′ + y2 sin4 θ′

m2
.√

x2 cos2 θ + y2 sin2 θ =

√
x4 + 2x3y + x2y2 − 2 (x4 + x2y2) sin2 θ′ + x4 sin4 θ′ − 2x3y sin4 θ′ + x2y2 sin4 θ′

m2
+

4x2y2 sin2 θ′

m2
=

√
x4 + 2x3y + x2y2 − 2 (x4 − x2y2) sin2 θ′ + x4 sin4 θ′ − 2x3y sin4 θ′ + x2y2 sin4 θ′

m2
=

x

m

√
x2 + 2xy + y2 − 2 (x2 − y2) sin2 θ′ + x2 sin4 θ′ − 2xy sin4 θ′ + y2 sin4 θ′ =

x

m

√
(x+ y)2 − 2 (x+ y) (x− y) sin2 θ′ + (x− y)2

(
sin2 θ′

)2
=

x

m

√(
(x+ y)− (x− y) sin2 θ′

)2
=

x · x+ y − (x− y) sin2 θ′

m
.

Now that we have our two equalities, we differentiate both sides of our equation for sin θ.
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d

dθ
(sin θ) =

d

dθ′

(
2x sin θ′

(x+ y) + (x− y) sin2 θ′

)
.

We can simply use a calculator for this; since x and y are treated as constants, our result
is

cos θ =
2x
(
cos θ′

(
x+ y + sin2 θ′ (x− y)

)
− 2 sin2 θ′ cos θ′ (x− y)

)
m2

.

We can equate this result with our expression for cos θ:

2x
(
cos θ′

(
x+ y + sin2 θ′ (x− y)

)
− 2 sin2 θ′ cos θ′ (x− y)

)
m2

=
2 cos θ′

√
x21 cos2 θ′ + y21 sin2 θ′

m
.

Dividing both sides by 2 cos θ′

m
gives us

x
(
x+ y + sin2 θ′ (x− y)− 2 sin2 θ′ (x− y)

)
m

=
√
x21 cos2 θ′ + y21 sin2 θ′.

Simplifying a little more, we have

x
(
x+ y − sin2 θ′ (x− y)

)
m

=
√
x21 cos2 θ′ + y21 sin2 θ′.

The left of the side of the equation (due to our second proven equation) is

x · x+ y − (x− y) sin2 θ′

m
=

√
x2 cos2 θ′ + y2 sin2 θ′.

Therefore, we conclude that√
x2 cos2 θ′ + y2 sin2 θ′ =

√
x21 cos2 θ′ + y21 sin2 θ′.

Now we can use this equivalence to show that

I (x, y) = I (x1, y1) = I (x2, y2) = . . .

If we continue with this iteration until its limit, we have

I (x, y) = lim
n→∞

I (xn, yn) = I (M (x, y) ,M (x, y)) .

I (M (x, y) ,M (x, y)) =

∫ π
2

0

dθ√
M (x, y)2 cos2 θ +M (x, y)2 sin2 θ

=

∫ π
2

0

dθ

M (x, y)
=

π

2M (x, y)
.

Thus, ∫ π
2

0

dθ√
x2 cos2 θ + y2 sin2 θ

=
π

2M (x, y)
.

Some manipulation of both sides gives us our desired result
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M (x, y) =
π

2
÷
∫ π

2

0

dθ√
x2 cos2 θ + y2 sin2 θ

.

�

Proposition 3.4. For the Arithmetic-Geometric Mean function M(x, y) and the complete
elliptic integral of the first kind function K(k) we have the following identity:

aπ

2M (a, b)
= K

(
1

a

√
a2 − b2

)
.

Proof. The following proof in part is due to [Gil].

We start out with the following equality:

π

2M (a, b)
=

∫ π
2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

We can manipulate the right hand side to get the following.∫ π
2

0

dθ√
a2 cos2 θ + b2 sin2 θ

=

∫ π
2

0

dθ

a
√

cos2 θ + b2

a2
sin2 θ

=

∫ π
2

0

dθ

a
√

1− a2−b2
a2

sin2 θ
=

1

a

∫ π
2

0

dθ√
1− a2−b2

a2
sin2 θ

=

1

a
K

(
1

a

√
a2 − b2

)
.

Returning to our original equation, we have

π

2M (a, b)
=

1

a
K

(
1

a

√
a2 − b2

)
.

aπ

2M (a, b)
= K

(
1

a

√
a2 − b2

)
.

�

Now that we have a working result, we can try out a few examples.

1. If a = b 6= 0 we have

aπ

2M (a, a)
= K (0) .

aπ

2a
= K (0) .

K (0) =
π

2
.

2. We can try finding the arithmetic-geometric mean of 1 and 0:
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Figure 1. AGM of 1 and x graphed on Cartesian Plane

a0 = 1, b0 = 0.

a1 =
1

2
, b1 = 0.

a2 =
1

4
, b2 = 0.

We notice that the arithmetic-geometric mean will be equal to 0 since the geometric
mean(bis) is always 0. If we plug in a = 1 and b = 0, we get

π

2M (1, 0)
= K

(
1

1

√
12 − 02

)
.

π

0
= K (1) .

Both sides tend toward ∞, as expected.

3. We can also graph the arithmetic-geometric mean of a and b. We use the direct result
of Theorem 3.3,

M (x, y) =
π

2
÷
∫ π

2

0

dθ√
x2 cos2 θ + y2 sin2 θ

.

Figure 1 shows the graph of the the arithmetic-geometric mean of 1 and x. Notice that
the graph is between the two equations y = x+1

2
(the arithmetic mean) and y =

√
x (the

geometric mean). The first number in our AGM need not be 1; we can easily adjust this
number using Theorem 3.1 while dividing the second number accordingly. For instance, to
find the AGM of 3 and 4, we can compute the following:

3M

(
1,

4

3

)
= M (3, 4) ≈ 3.482.

4. In fact, we can extend our graph from (3) to the 3D space, so that we can set
z = M (x, y). Figure 2 shows this result.
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Figure 2. AGM of x and y in 3D Space

We now proceed to our final interesting result using the arithmetic geometric mean, which
is an approximation for π.

Theorem 3.5.

π =
4
(
M
(

1, 1√
2

))2
1− 2

∑∞
j=1 2jc2j

where c2n = a2n − b2n.

Before we proceed with the proof of Theorem 3.5, let us prove some intermediate results.
All following propositions and proofs are due to [Mil19].

Proposition 3.6. Denote a function L such that

L(a, b) =

∫ π
2

0

cos2 θ√
a2 cos2 θ + b2 sin2 θ

dθ.

Then the function L satisfies the following properties:

(1) L(b, a) + L(a, b) = I(a, b)

(2) L(b, a)− L(a, b) = a−b
a+b
· L(b1, a1)

where the function I, as mentioned previously, is the following:

I (x, y) =

∫ π
2

0

dθ√
x2 cos2 θ + y2 sin2 θ

.

Proof.
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(1) can be proved by substituting θ′ = π
2
−θ. Then we have cos θ′ = sin θ and sin θ′ = cos θ,

which yields the following equations:

L (b, a) =

∫ π
2

0

cos2 θ√
b2 cos2 θ + a2 sin2 θ

dθ =

∫ π
2

0

sin2 θ′√
b2 sin2 θ′ + a2 cos2 θ′

dθ′.

Since sin2 + cos2 = 1, we have

L(b, a) + L(a, b) =

∫ π
2

0

sin2 θ + cos2 θ√
a2 cos2 θ + b2 sin2 θ

dθ = I (a, b) .

For the second equation, we start by substituting t = b tan θ. Our substitution is then
θ = arctan

(
t
b

)
→ dθ = 1

b
· 1

( tb)
2
+1
dt = b

t2+b2
dt. Additionally, we have b2

b2+t2
= 1

1+sec2 θ
= cos2 θ

and t2

b2+t2
= 1− cos2 θ = sin2 θ. Putting all of it together, we have the following:

L (a, b) =

∫ ∞
0

b2

b2+t2√
a2 · b2

b2+t2
+ b2 · t2

b2+t2

· b

t2 + b2
dt =

∫ ∞
0

b2

b2+t2
dt√

(t2 + a2) (t2 + b2)
.

We can do the same for calculating L (b, a), simply replacing all “b”s with “a”s and vice
versa. Therefore, we have

L(b, a)− L(a, b) =

∫ ∞
0

a2

b2+t2
− b2

b2+t2√
(t2 + a2) (t2 + b2)

dt.

With some simplification we have

a2

b2 + t2
− b2

b2 + t2
=
a2 (b2 + t2)− b2 (a2 + t2)

(a2 + t2) (b2 + t2)
=

a2t2 − b2t2

(a2 + t2) (b2 + t2)
=

(a2 − b2) t2

(a2 + t2) (b2 + t2)
.

Thus, we can rewrite our difference of functions as

L(b, a)− L(a, b) =

∫ ∞
0

a2

b2+t2
− b2

b2+t2√
(t2 + a2) (t2 + b2)

dt =

∫ ∞
0

(a2 − b2) t2

(t2 + a2)
3
2 (t2 + b2)

3
2

dt.

Now, set x = 1
2

(
t− ab

t

)
and let

f (x) =
(t2 + a2) (t2 + b2)

t2
.

Substituting in x for our expression (dt = t√
x2+ab

dx), we have∫ ∞
0

(a2 − b2) t2

(t2 + a2)
3
2 (t2 + b2)

3
2

dt =

∫ ∞
−∞

(a2 − b2) t2

(t2 + a2)
3
2 (t2 + b2)

3
2

· t√
x2 + ab

dx =∫ ∞
−∞

(a2 − b2) dx
f (x)

3
2 ·
√
x2 + ab

.

Now we have

f(x) =
(t2 + a2) (t2 + b2)

t2
= t2+a2+b2+

a2b2

t2
= t2−2ab+

a2b2

t2
+a2+2ab+b2 = (2x)2+(a+b)2.



10 ALAN LEE

Thus (letting a1 = a+b
2

and b1 =
√
ab),

L(b, a)− L(a, b) =

∫ ∞
−∞

(a2 − b2) dx(
(2x)2 + (a+ b)2

) 3
2 ·
√
x2 + ab

=

(
a2 − b2

) ∫ ∞
−∞

dx

8
(
x2 +

(
a+b
2

)2) 3
2 ·
√
x2 + ab

=

a2 − b2

8

∫ ∞
−∞

dx

(x2 + a21)
3
2 ·
√
x2 + b21

=

a2 − b2

8a21

∫ ∞
−∞

a21
a21+x

2dx

(x2 + a21)
1
2 ·
√
x2 + b21

=

a2 − b2

8a21
· 2
∫ ∞
0

a21
a21+x

2dx√
(x2 + a21) · (x2 + b21)

=

a2 − b2

4a21
· L (b1, a1) =

(a− b) (a+ b)

(a+ b)2
· L (b1, a1) =

a− b
a+ b

· L (b1, a1) .

Thus we have proven that

L(b, a)− L(a, b) =
a− b
a+ b

· L (b1, a1) .

�

Proposition 3.7. Denote S as the following:

∞∑
j=1

2j · c2j

where c2n = a2n − b2n. Then we have

2c20L (a, b) =
(
c20 − S

)
I (a, b) .

Proof. We have 4 (a21 − b21) = 4
(
a+b
2

)2 − 4ab = (a+ b)2 − 4ab = (a− b)2, which can be
used in the simplification of this expression (while using the results of Proposition 2.6):

4
(
a21 − b21

)
L (b1, a1) =

(a− b)2 L (b1, a1) =

(
a2 − b2

)
· a− b
a+ b

· L (b1, a1) =(
a2 − b2

)
· (L (b, a)− L (a, b))) =(

a2 − b2
)
· (L (b, a)− (I (a, b)− L (b, a))) =
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(
a2 − b2

)
· (2L (b, a)− I (a, b)) .

Rewriting a21 − b21 as c21 and a2 − b2 as c20, we have

4c21 · L (b1, a1) = c20 · (2L (b, a)− I (a, b))

2c20 · L (b, a)− 4c21 · L (b1, a1) = c20 · I (a, b) .

This also works for all j ∈ N:

2c2j · L (bj, aj)− 4c2j+1 · L (bj+1, aj+1) = c2j · I (aj, bj) .

Multiplying by 2j and noting that I (aj, bj) = I (a, b) from Theorem 3.3, we see that

2j+1 · c2j · L (bj, aj)− 2j+2 · c2j+1 · L (bj+1, aj+1) = 2j · c2j · I (a, b) .

Adding the equations for 0 ≤ j ≤ n gives us

n∑
j=0

2j+1 · c2j · L (bj, aj)−
n∑
j=0

2j+2 · c2j+1 · L (bj+1, aj+1) =
n∑
j=0

2j · c2j · I (a, b).

By shifting the index k = j + 1 of the second sum we obtain

n∑
j=0

2j+2 · c2j+1 · L (bj+1, aj+1) =
n+1∑
k=1

2k+1 · c2k · L (bk, ak).

Now we can cancel terms by telescoping our previous equation:

n∑
j=0

2j+1 · c2j · L (bj, aj)−
n∑
j=0

2j+2 · c2j+1 · L (bj+1, aj+1) =

n∑
j=0

2j+1 · c2j · L (bj, aj)−
n+1∑
k=1

2k+1 · c2k · L (bk, ak) =
n∑
j=0

2j · c2j · I (a, b)

20+1 · c20 · L (b0, a0)− 2n+2 · c2n+1 · L (bn+1, an+1) =
n∑
j=0

2j · c2j · I (a, b).

Now we observe that

c2n+1 = a2n+1 − b2n+1 =(
an + bn

2

)2

− anbn =

a2n + 2anbn + b2n − 4anbn
4

=

(an − bn)2

4
=

an − bn
4 (an + bn)

·
(
a2n − b2n

)
=

an − bn
4 (an + bn)

· c2n.

The final result is less than c2n
4

because bn > 0→ an−bn
an+bn

< 1, and thus we have
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c2n+1 <
c2n
4
.

We can extend this to see how c2n+1 < 4−n−1c20. Additionally, since L (bn+1, an+1) +
L (an+1, bn+1) = I (bn+1, an+1) from Proposition 3.6, and both values on the left hand side
are positive, we have

L (bn+1, an+1) < I (bn+1, an+1) = I (b, a) .

Therefore, we have

2n+2 · c2n+1 · L (bn+1, an+1) < 2n+2 · 4−n−1 · c20 · I (b, a) = 2−n · c20 · I (b, a) .

Therefore, for n → ∞ we lose our second term (it tends towards 0) and our equation
becomes

20+1 · c20 · L (b0, a0)− lim
n→∞

(
2n+2 · c2n+1 · L (bn+1, an+1)

)
=
∞∑
j=0

2j · c2j · I (a, b)

2 · c20 · L (b, a) =
∞∑
j=0

2j · c2j · I (a, b) =
(
c20 + S

)
· I (a, b) .

Finally, using Proposition 3.6’s L (b, a) = I (a, b)− L (a, b) once again we have

2 · c20 · L (b, a) =
(
c20 + S

)
· I (a, b)

2 · c20 · (I (a, b)− L (a, b)) =
(
c20 + S

)
· I (a, b)

2 · c20 · I (a, b)−
(
c20 + S

)
· I (a, b) = 2 · c20 · L (a, b)(

c20 − S
)
· I (a, b) = 2 · c20 · L (a, b) .

�

Proposition 3.8. The following functions and their properties will prove very useful to
us in the proof of Theorem 3.5:

The Gamma Function Γ(x) =
∫∞
0
tx−1 · e−tdt satisfies for Re(x)> 0:

Γ(x+ 1) = x · Γ(x)

and

Γ

(
1

2

)
=
√
π.

The Beta Function B (u, v) =
∫ 1

0
tu−1 · (1− t)v−1 dt satisfies for Re(u)> 0 and Re(v)> 0:

B (u, v) =
Γ(u) · Γ(v)

Γ(u+ v)
.
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These proofs involve matrices and integration by parts, something we are not very inter-
ested in right now. As a result, we will be skipping the proofs.

�

Proposition 3.9.

L
(√

2, 1
)
· I
(√

2, 1
)

=
π

4
.

Proof. We notice the following due to the property sin2 + cos2 = 1:

L
(√

2, 1
)

=

∫ π
2

0

cos2 θdθ√
2 cos2 θ + sin2 θ

=

∫ π
2

0

cos2 θdθ√
1 + cos2 θ

I
(√

2, 1
)

=

∫ π
2

0

dθ√
2 cos2 θ + sin2 θ

=

∫ π
2

0

dθ√
1 + cos2 θ

Next, if we substitute x = cos θ, we have θ = arccosx→ dθ = −dx√
1−x2 :

L
(√

2, 1
)

=

∫ π
2

0

cos2 θdθ√
1 + cos2 θ

=

∫ 0

1

x2√
1 + x2

· −dx√
1− x2

=

∫ 1

0

x2dx√
1− x4

I
(√

2, 1
)

=

∫ π
2

0

dθ√
1 + cos2 θ

=

∫ 0

1

1√
1 + x2

· −dx√
1− x2

=

∫ 1

0

dx√
1− x4

Now for another substitution, this time x = t
1
4 . Then dx = 1

4
t−

3
4dt:

L
(√

2, 1
)

=

∫ 1

0

x2dx√
1− x4

=

∫ 1

0

t
1
2

√
1− t

· dt
4t

3
4

=

∫ 1

0

1

4
· t

3
4
−1 · (1− t)

1
2
−1 dt =

1

4
·B
(

3

4
,
1

2

)
.

I
(√

2, 1
)

=

∫ 1

0

dx√
1− x4

=

∫ 1

0

1√
1− t

· dt
4t

3
4

=

∫ 1

0

1

4
· t

1
4
−1 · (1− t)

1
2
−1 dt =

1

4
·B
(

1

4
,
1

2

)
.

Now with the contents of Proposition 3.8, we obtain the following:

L
(√

2, 1
)
· I
(√

2, 1
)

=
1

4
·B
(

3

4
,
1

2

)
· 1

4
·B
(

1

4
,
1

2

)
=

1

4
·

Γ
(
3
4

)
Γ
(
1
2

)
Γ
(
5
4

) · 1

4
·

Γ
(
1
4

)
Γ
(
1
2

)
Γ
(
3
4

) =

1

16
·

Γ
(
1
2

)2
Γ
(
1
4

)
Γ
(
5
4

) =
1

16
·
πΓ
(
1
4

)
1
4
Γ
(
1
4

) =
π

4
.

�

Now we finally can prove our theorem with the aid of all the propositions we have.

Proof of Theorem 3.5. Note that both functions L and I satisfy the following property:

I (ma,mb) =

∫ π
2

0

dθ√
m2a2 cos2 θ +m2b2 sin2 θ

=
1

|m|
· I (a, b) .



14 ALAN LEE

We can use this property to see why I
(

1, 1√
2

)
=
√

2 · I
(√

2, 1
)

and L
(

1, 1√
2

)
=
√

2 ·
L
(√

2, 1
)
. Multiplying together and applying Proposition 3.9 gives us

I

(
1,

1√
2

)
·L
(

1,
1√
2

)
=
√

2·I
(√

2, 1
)
·
√

2·L
(√

2, 1
)

= 2·I
(√

2, 1
)
·L
(√

2, 1
)

= 2·π
4

=
π

2
.

Next, we use Proposition 3.7:(
c20 − S

)
· I (a, b) = 2 · c20 · L (a, b)

(
c20 − S

)
· I (a, b)2 = 2 · c20 · L (a, b) · I (a, b) .

Plugging in a = 1 and b = 1√
2

and noting that c20 = 12 − 1√
2

2
= 1

2
, we have(

1

2
− S

)
· I
(

1,
1√
2

)2

= 2 · 1

2
· L
(

1,
1√
2

)
· I
(

1,
1√
2

)
= 2 · 1

2
· π

2
=
π

2
.

Remembering that we proved in Theorem 3.3 that

I (a, b) =
π

2 ·M (a, b)
,

we get the following: (
1

2
− S

)
· I
(

1,
1√
2

)2

=
π

2(
1

2
− S

)
· π

2 ·M
(

1, 1√
2

)2

=
π

2
.

We can rearrange a bit and also note that S =
∑∞

j=1 2j · c2j :(
1

2
− S

)
· π2

4 ·M
(

1, 1√
2

)2 =
π

2(
1

2
− S

)
· π

2 ·M
(

1, 1√
2

)2 = 1

(
1

2
− S

)
· π = 2 ·M

(
1,

1√
2

)2

(1− 2S) · π = 4 ·M
(

1,
1√
2

)2

π =
4 ·M

(
1, 1√

2

)2(
1− 2 ·

∑∞
j=1 2j · c2j

) .
�
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