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Abstract. This expository paper introduces the polynomial method in combinatorics and
uses it to prove the Finite Field Kakeya Conjecture as well as the Joints problem in Euclidean
space.

1. Introduction

The polynomial method in combinatorics is a method of solving combinatorics problems
which uses polynomials to capture some underlying structure in the combinatorics problem
and then reasons about the problem via the polynomial’s algebraic properties. Roughly,
the process is something along the lines of: embed the combinatorical problem into a vector
space, construct a low-degree polynomial that is zero on a certain set, and show that because
of this the original set must satisfy some properties.

The method was first used to great effect to solve the finite field Kakeya conjecture by
Dvir in 2008, and has since been used to solve other related problems (such as the joints
problem in this paper). This paper is meant to give an overview of the solutions to the finite
field Kakeya conjecture and joints problem with the polynomial method, and hopefully to
give you a better understanding of how it is used.

2. Finite Field Kakeya Conjecture

The finite field Kakeya problem is a toy problem of the more general Kakeya problem: how
small can you make sets in R such that they still contain a line segment in every direction?
Instead of operating over Rn, it operates over Fn

q .
We first formalize the definition of a Kakeya set.

Definition 2.1 (Kakeya Set). A set K ⊂ Fn
q is a Kakeya set if for all a ∈ Fn

q there exists
b ∈ Fn

q such that {at+ b : t ∈ Fq} ⊆ K. That is, for all a, K contains a line in that direction.

With this, we can now state the formal Finite Field Kakeya Theorem.

Theorem 2.2 (Finite Field Kakeya Theorem). If K ⊂ Fn
q is a Kakeya set, then

|K| ≥ cnq
n,

where cn = (10n)−n.

The proof of this consists of proving some basic properties about a polynomial which
vanishes on K, and it is much shorter than most suspected when tackling the problem (as
the Kakeya problem is still unsolved and has not yielded to such basic methods yet). We
will need two key pieces of machinery to prove 2.2: parameter counting arguments and the
vanishing lemma.
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Proposition 2.3. Let S ∈ Fn be some finite set. Then, if DimPolyD(Fn) > |S|, there is a
nonzero polynomial P ∈ PolyD(Fn) that vanishes on S.

Proof. Let p1, . . . , p|S| be the points of S. We let E be the evaluation map E : PolyD(Fn) →
F|S| defined by

E(Q) = (Q(p1), . . . , Q(p|S|).

The map E is a linear map, and the kernel of E is exactly the set of polynomials that
vanish on S. If dimPolyD(Fn) > |S|, by the Rank-Nullity Theorem, this map must have a
non-trivial kernel, therefore there exists some polynomial in this set that vanishes on S. ■

This raises the obvious question, what is the dimension of PolyD(Fn)?

Lemma 2.4. We have an exact formula for the dimension, mainly that

dimPolyD(Fn) =

(
D + n

n

)
.

Proof. To find the dimension, we can count the number of monomials in PolyD(Fn), as these
form the basis of the polynomial space. Fix D,n, and let the monomial xD1

1 . . . xDn
n be

represented by a string of D ∗ and n | (stars and bars) such that each unique monomial
corresponds to the stars and bars configuration of D1 ∗, a |, etc. with D−

∑
Di stars at the

end. The total number of such configurations is
(
D+n
n

)
. ■

It is also useful to keep in mind the heuristic dimPolyD(Fn) ≥ Dn/n!, which follows from
2.5.

Therefore, we get the following.

Lemma 2.5 (Parameter Counting). If S ⊂ Fn and |S| <
(
D+n
n

)
, then there is a nonzero

polynomial P ∈ PolyD(Fn) that vanishes on S.

This follows from 2.3 and 2.5. Now, we will prove the vanishing lemma, starting with an
elementary lemma.

Lemma 2.6. If P ∈ PolyD(Fn), and if P vanishes at D + 1 points, then P is the zero
polynomial.

To show 2.6, we need two other lemmas.

Lemma 2.7. If P (x) ∈ PolyD(F) is a polynomial in one variable and x1 ∈ F, then we can
write P in the form

P (x) = (x− x1)P1(x) + r.,

where P1(x) ∈ PolyD−1(F) and r ∈ F.

Proof. We will show this by induction on D. Our base case, when D = 0, P is a constant
polynomial and this is obviously true.

Let P (x) =
∑D

i=0 aix
i. Let Q(x) = P (x) − (x − x1)(aDx

D−1). As the xD term of Q(x)
vanishes, Q(x) ∈ PolyD−1(F). By induction, we have that

P (x)− (x− x1)(aDx
D−1) = Q(x) = (x− x1)Q1(x) + r,

where Q1(x) ∈ PolyD−2(F) and r ∈ F. Therefore, we see that

P (x) = (x− x1)(aDx
D−1 +Q1(x)) + r,

which completes the proof by induction. ■
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Lemma 2.8. If P (x) ∈ PolyD(F) is a polynomial over a field F and P (x1) = 0 for some
x1 ∈ F, then P (x) = (x− x1)P1(x) for some polynomial P1(x) ∈ PolyD−1(F).

Proof. We can write P as P (x) = (x − x1)P1(x) + r by 2.8. Substituting in P (x1) = 0, we
see that r = 0. ■

Proposition 2.9. If P ∈ PolyD(F) and P vanishes at D + 1 points on a line l, then P
vanishes at every point of l.

Proof. We prove 2.9 by induction on D. Our base case is when D = 0, where P is constant.
If P goes to 0 at any point, it is then the zero polynomial.
For the inductive step, let P ∈ PolyD(F), and assume P vanishes at D+ 1 distinct points

x1, . . . , xD+1. By 2.8, there exists some polynomial P1 ∈ PolyD−1(F) such that

P (x) = (x− xD+1)P1(x).

However, P1 must vanish on x1, . . . , xD, and by the inductive hypothesis therefore P1 is the
zero polynomial. Therefore, P is the zero polynomial, and we have completed the proof. ■

Let a line l ⊂ Fn be a one-dimensional affine subspace.

Corollary 2.10 (Vanishing Lemma). If P ∈ PolyD(Fn) and P vanishes at D + 1 points on
a line l, then P vanishes at every point in l.

Proof. We can parametrize an arbitrary line l with a map x : F → Fn, such that x(t) = at+b,
for vectors a, b ∈ Fn with a ̸= 0. Let Q(t) = P (x(t)) = P (at + b), which is a polynomial in
one variable of degree ≤ D. As P vanishes at D + 1 points of l, Q vanishes on D + 1 points
of t. By 2.9, Q is the zero polynomial, so P vanishes on l. ■

We can now prove the Finite Field Kakeya Theorem!

Proof. We will use a proof by contradiction. Suppose there exists a Kakeya set K ⊂ Fn
q such

that |K| < (10n)−nqn. By 2.5, there is a nonzero polynomial P that vanishes on K with
Deg P ≤ n|K|1/n < q.
Let D = Deg P. We can write P as the sum of two polynomials: PD, the polynomial

consisting of the terms in P of degree D, and Q, containing the rest. Observe that PD is
nonzero, and that Deg Q < D.

Let a ∈ Fn
q , with a ̸= 0. Pick b such that the line {at + b : t ∈ F} ⊂ K. Let there be

a polynomial in one variable R(t) = P (at + b). Observe that R vanishes for all t ∈ F, and
Deg R ≤ D < q. By 2.10, R is the zero polynomial, so every coefficient of R is 0. However,
the coefficient of tD in R is exactly PD(a). So, we see that PD(a) vanishes for all a ∈ Fn

q /{0}.
As PD is homogenous of degree D ≥ 1, PD also vanishes at 0, and also vanishes at all points
in Fn

q . Therefore, it is the zero polynomial, which is a contradiction.
This proves 2.2. ■

2.1. Connection to Projective Spaces. The process of splitting P into its part of highest
degree PD and the rest in Q has an interesting geometric interpretation.

Definition 2.11 (Projective Spaces). The projective space PFn is the set of equivalence
classes of Fn+1/{0} where elements x, y ∈ Fn+1/{0} are equivalent if they are equivalent
modulo some scalar factor: that is, x ∼ y ⇐⇒ x = λy for some λ ∈ F.
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We can write PFn as a disjoint union of Fn and PFn−1. The natural way to do this is to
identify some point (x1, . . . , xn) ∈ Fn with the equivalence class of (x1, . . . , xn, 1) ∈ PFn.
Then, the equivalence classes of (x1, . . . , xn, 0) ∈ PFn naturally identify themselves to points
in PFn−1.

Definition 2.12. The points in PFn−1 ⊂ PFn are called the points at infinity.

Observe that every line in Fn can be extended to a projective line in PFn by adding a
point at infinity. Take the line {at+ b : t ∈ F} for a, b ∈ Fn where a ̸= 0. Then, in projective
space, this line extends to include the point (a, 0) ∈ PFn.

For polynomials, the process is similar (for extending the zero set). Let P ∈ PolyD(Fn),
and let Z(P ) ⊂ Fn. Then, if a ∈ Fn

q and a ̸= 0, the point at infinity (a, 0) only lies in the
extended Z(P ) iff PD(a) = 0.

This proof of the Finite Field Kakeya Theorem 2.2 essentially shows that if a line l ⊂ Fn

lies in the zero set of a polynomial P of degree < q, then the point of l at infinity also lies
in Z(P ). This can be thought of as a version of the vanishing lemma in projective space.

Therefore, we can summarize the proof of 2.2 as thus: if K ⊂ Fn
q is a small Kakeya set,

then by parameter counting 2.5 there exists a polynomial that vanishes on K with degree
less than q. Because K is Kakeya, the polynomial vanishes on one line in every direction,
and by the version of the vanishing lemma for projective space it therefore vanishes at all
the points of infinity of PFn

q . However, then it vanishes at too many points, leading to a
contradiction. For more information see [Gut10, Chapter 2].

3. Joints Problem

Let L be a set of lines in R3. A joint of L is a point which lies in three non coplanar lines
of L (is an intersection of three lines such that they are not coplanar). What is the maximal
number of joints that can be formed from L lines?

Theorem 3.1. Any L lines in R3 determine ≤ 10L3/2 joints.

Lemma 3.2. If L is a set of lines in R3 that determines J joints, then one of the lines
contains at least 3J1/3 joints.

Proof. Let P be the lowest degree non-zero polynomial that vanishes at every joint of L. By
2.5, the degree of P is less than or equal to 3J1/3.

We will prove the lemma by contradiction, so assume that every line of L has > 3J1/3

joints. By the vanishing lemma, 2.10, P must vanish on every line of L.
Now we can look at the gradient of P at each joint of L.

Lemma 3.3. If x is a joint of L, and if a smooth function F : R3 → R vanishes on the lines
of L, then ∇F vanishes at x.

Proof. As x lies in three non coplanar lines of L, the tangent vectors for the three lines
intersecting x form a basis for R3. For the tangent vectors vi, i = 1, 2, 3, as ∇F (x) · vi = 0,
we have that ∇F (x) = 0, because v1, v2, v3 are a basis for R3. ■

Therefore, the derivatives of P vanish at each joint. As the derivatives of P have smaller
degree than P, and P was the minimal degree non-zero polynomial that vanishes at each
joint, then each derivative of P is zero, so P must be constant. As P is non-zero, then there
must be no joints at all, and this is a contradiction. ■
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To prove 3.1, we do some algebra.

Proof. Let J(L) be the maximum number of joints that can be formed by L lines. If L is
a set of L lines, then by 3.2 one of the lines contains at most 3J(L)1/3 of the joints. The
numberr of joints not on this line is at most J(L− 1). Therefore, we can bound J(L) as

J(L) ≤ J(L− 1) + 3J(L)1/3.

Repeating this, we see that

J(L) ≤ J(L− 1) + 3J(L)1/3 ≤ · · · ≤ L · 3J(L)1/3.
Rearranging gives us that J(L)2/3 ≤ 3L, which implies 3.1. ■
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