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Abstract

In the past decade, the polynomial method in combinatorics has rapidly
risen in popularity. It has shown up many times as an unexpected way
to solve combinatorial problems by analyzing their algebraic structure
through polynomials. The method is rooted in computer science and is
comparable to finding the line of best fit on a given data set. In this
paper, we explain the method and touch on a few relevant examples of its
application.

1 The Method

In general, a high-level outline of the approach consists of:

1. Expressing the problem in terms of points in a vector space,

2. Finding a polynomial of low degree which vanishes on all of the points,

3. Analyzing the algebraic properties of the polynomial and forming a con-
clusion.

We begin by demonstrating how the polynomial is determined. Let F be a finite
field. Suppose p1, . . . , pk are points in Fn. Then, we propose the question:

Question 1.1. Does there exist a polynomial P with degree at most d such that
P vanishes on all the points p1, . . . , pk?

Answering this question is really just a matter of linear algebra. We define
V (d) to be the vector space of all polynomials in n variables with degree less
than or equal to d. For example, if n = 2 and d = 2, then

V (d) = {ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f | a, b, c, d, e, f ∈ F}.

Now, let E be the linear map sending V (d) to Fn such that

E(P ) = (P (p1), . . . , P (pk)) .

Then, there exists a nonzero vanishing polynomial with degree less than or equal
to d if and only if E has a non-trivial kernel, i.e. there exists a polynomial P
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such that E(P ) = (0, . . . , 0). Since F is finite, it is possible to iteratively check
every degree d until we find a vanishing polynomial. While we cannot say much
about the vanishing polynomial yet, we will see later how it can help reveal the
algebraic structure of a problem.

2 Recovering Polynomials from Corrupted Data

In this section, we analyze a problem dealing with single-variable polynomials.
We first provide a few elementary facts regarding polynomials.

Lemma 2.1. A nonzero single-variable polynomial with degree d can have at
most d zeroes.

From this lemma, we can easily derive the following result.

Corollary 2.2. If P and Q are nonzero single-variable polynomials with degree
at most d, then either

1. P (x) = Q(x) for at most d values of x, or

2. P = Q.

Proof. Consider the polynomial G = P − Q. Then, G(x) = 0 if and only if
P (x) = Q(x). If G is nonzero, it must have degree at most d so it has at most
d roots. Thus, when P ̸= Q, P (x) = Q(x) also has at most d roots. If G = 0,
then we simply have P = Q. ■

We now introduce the problem, followed by a proof provided in [1].

Theorem 2.3. Let F be a finite field with q elements such that q is large. Let
P (x) be a polynomial with degree d ≤ q

1
3 . Let F (x) be a polynomial that agrees

with P (x) at least 51% of the time (i.e. F (x) = P (x) for at least 51q
100 distinct

values of x). Then, given the function F , it is possible to determine P .

Proof. Let q > 104. Suppose Q(x) is some polynomial agreeing with F (x) on
at least 51q

100 distinct values of x. Then, by the pigeonhole principle, Q(x) must

agree with P (x) on at least 2q
100 distinct values of x. Since

2q

100
> q

1
3

for q > 104, we must have that Q = P by Corollary 2.2. Hence, it suffices to
find some polynomial Q(x) agreeing with F (x) on at least 51q

100 distinct values
of x. Since F is a finite field, we can simply check all polynomials of degree less
than or equal to q

1
3 to determine P . ■

Alternatively, we can set

G := {x, F (x) | x ∈ F}

to be the graph of F in F2. Let Q(x, y) be the polynomial of minimal degree
vanishing on G. Then, factor Q until it is irreducible. The polynomial y−P (x)
must divide Q(x, y).
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3 Finite Field Kakeya Conjecture

We first prove a lemma that is essential to the proof of the Finite Field Kakeya
Conjecture. This bounds the number of zeroes of a degree d polynomial in a
finite field.

Lemma 3.1 (Schwartz-Zippel). Let p(x1, . . . , xn) be a nonzero polynomial over
a field F with degree d. Given some finite set S ⊆ F, for randomly selected
a1, . . . , an ∈ S,

Pr[p(a1, . . . , an) = 0] ≤ d

|S|
.

Proof. We will use induction on n, the number of variables in p. For n = 1, p
has at most d roots, so the statement is trivial.

Suppose the statement holds for all n ≤ k − 1 variables. Then, consider a
polynomial p(x1, . . . , xk). We can rewrite p as a polynomial in x1 by setting

p(x1, . . . , xk) =

k∑
i=0

xi
1pi(x2, . . . , xk).

Let m be the maximum value such that pm is not the zero polynomial. Since
xm
1 pm has degree at most d, we know that pm has degree at most d−m. Suppose

we randomly choose a1, a2, . . . , ak ∈ S. By our induction hypothesis,

Pr[pm(a2, . . . , ak) = 0] ≤ d−m

|S|
.

Now, define the polynomial

q(x1) =

k∑
i=0

xi
ipi(r2, . . . , rk).

We will denote the events pm(a2, . . . , ak) = 0 by A and q(a1) = 0 by B. Note
that if A doesn’t occur, then q(x1) has degree m, so by our induction hypothesis

Pr[B | ¬A] ≤ m

|S|
.

Combining everything, we have that

Pr[B] = Pr[B ∧A] + Pr[B ∧ ¬A]

= Pr[B ∧A] + Pr[B | ¬A] · Pr[¬A]

≤ Pr[A] + Pr[B | ¬A]

≤ d−m

|S|
+

m

|S|
=

d

|S|
.

■
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A Kakeya Set K in Rn is a compact set containing a unit line segment in
every direction, and the general Kakeya Conjecture states that any such set
must have dimension n. However, we look at a simpler version of the problem,
involving Kakeya sets in finite fields.

Definition 3.2 (Kakeya Set). Let F be a finite field with q elements. A Kakeya
Set is a set K ⊂ Fn containing a line in every direction. In particular, K is a
Kakeya set if for every slope x ∈ Fn, there exists some point y ∈ Fn such that

{y + ax | a ∈ F} ⊆ K.

Theorem 3.3 (Finite Field Kakeya Conjecture). Let K be a Kakeya set in Fn

where F is some finite field with q elements. Then,

|K| ≥ Cn · qn−1

for some constant Cn that only depends on n.

We outline the proof from [2].

Proof. Assume for the sake of contradiction that

|K| <
(
q + n− 3

n− 1

)
.

Consider the set of all monomials xd1
1 xd2

2 . . . xdn
n with degree exactly q− 2. The

size of this set is the number of solutions to

d1 + d2 + . . .+ dn = q − 2,

which is exactly equal to (
q + n− 3

n− 1

)
.

Suppose we have some nonzero homogeneous polynomial P (x1, . . . , xn) of degree
q− 2. There are

(
q+n−3
n−1

)
terms in P and less than

(
q+n−3
n−1

)
points in K. Hence,

there exists some arrangement of coefficients for P such that it vanishes on all
points in K, as this reduces to solving a system of |K| equations in more than
|K| variables.

We seek to show that P vanishes on all points in Fn. Clearly, we have that
P (0, . . . , 0) = 0. Consider some nonzero vector x ∈ Fn. By the definition of a
Kakeya set, there exists some point y ∈ Fn such that

{y + ax | a ∈ F} ⊆ K.

By the homogeneity of P , we know that if P (z) = 0 for some z ∈ Fn, then
P (cz) = 0 for any c ∈ F. Hence, since P vanishes on all points in K, we can
determine that

P (ay + x) = P
(
a ·

(
y + a−1x

))
= 0.
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Since P is a degree q−2 polynomial, P (ay+x) must be a degree q−2 polynomial
in a. However, it has at least q−1 roots, corresponding to the nonzero elements
of F, so it must be the zero polynomial. Hence, plugging in a = 0, we find that
P (x) = 0.

We have shown that P (x) = 0 for all x ∈ Fn. However, by the Schwartz-
Zippel lemma,

Pr[P (x) = 0] ≤ d

|S|
=

q − 2

q
< 1.

This is a contradiction, so we must have

|K| ≥
(
q + n− 3

n− 1

)
≈ qn−1

(n− 1)!
.

■

We can come up with an even better bound using the simple observation
that a product of Kakeya sets is also a Kakeya set.

Theorem 3.4. Let K be a Kakeya set in Fn where F is some finite field with
q elements. Then, for any ϵ > 0,

|K| ≥ Cn,ϵ · qn−ϵ

for some constant Cn,ϵ that only depends on n and ε.

Proof. Note that for any integer r, the Cartesian product Kr ⊂ Fn·r is also a
Kakeya set. Then, applying Theorem 3.3, we find that

|K|r ≥ Cn·r · qn·r−1,

so
|K| ≥ Cn, 1r

· qn− 1
r

where
(
Cn, 1r

)r

= Cn·r. ■
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