
AN INTRODUCTION TO LINEAR ALGEBRA IN ERROR
CORRECTING CODES

OLIVIA XU

1. Introduction

This paper serves as a gentle introduction to error-correcting codes. We begin with
fundamental definitions then explain the core problem that we aim to solve with error-
correcting codes. Next, we introduce an intuitive solution to this problem that provides
the groundwork for the rest of the paper. After defining linear codes, we study and an-
alyze the efficiency of a specific family of codes: Hamming codes. Finally, we conclude
by discussing real world applications and other types of linear codes.

First, we introduce some definitions:

Definition 1.1. An alphabet A of size s is a set of s characters, or code symbols. An

denotes the set of all strings of length n whose characters are in A.

Definition 1.2. A code C of length n is some subset of An.

Definition 1.3. A binary code is a code over the alphabet {0, 1} whose characters
are referred to as bits.

In this paper, we specifically examine binary codes and work in the field F2. We will
assume familiarity with field operations.

2. The Problem

In information theory, codes are transmitted over a communication channel that in
the real world may take the form of a wire or a radio channel. Sending codes over
channels presents the risk of error or corruption. For example, a 0 may become a 1, or
vice versa. This paper will explore codes with at most one error per string.

We construct an information theoretic framework as follows:

(1) A source wants to convey a message to a receiver.
(2) The source encodes the message to reduce redundancy for ease and efficiency

of communication.
(3) The channel encodes the message to introduce redundancy to ensure that de-

coding is always possible after transmission across the channel.
(4) The channel decodes the message.
(5) The receiver decodes the message.

Date: April 11, 2023.
1



2 OLIVIA XU

So, what really is an error-correcting code? An error-correcting code is a function
that transforms a message of, say, length k into a code of length n such that we can
always recover the original message despite errors in the encoded message.

3. An Intuitive Solution

Suppose we wish to send a message x of length k. Then, we transmit the code Gx.
G is called the generator matrix of the code and essentially encodes the source’s
message.

A simple solution for a valid error-correcting code is transmitting each bit three times.
That is, for each bit x, we employ the generator

G =

1
1
1


to encode the message. For example, if x = (1), then we transmit

Gx =

1
1
1

 ,

and if x = (0), then we transmit

Gx =

0
0
0

 .

In the best case scenario in which no corruption occurs, the received message is equiv-
alent to Gx. If an error occurs, however, then one bit is flipped, so we can deduce the
correct bit by locating the bit that appears twice. Thus, this repetition code allows us
to both detect and correct up to one error.

One way to formalize this is to use a parity checker. Suppose the receiver obtains
the message

y =

y1
y2
y3

 .

Then, when no errors occur, it must be the case that y1 + y2 = 0 and y1 + y3 = 0. So,
we create the parity checker matrix

P =

(
1 1 0
1 0 1

)
.

Now, there are four possible outputs upon computing Py. Analyzing the output allows
us to not only detect but also correct a potential error.

(1) Py =

(
0
0

)
. In this case, y1 = y2 and y1 = y3 so no error occurred. Therefore,

we can conclude that x = y.



AN INTRODUCTION TO LINEAR ALGEBRA IN ERROR CORRECTING CODES 3

(2) Py =

(
0
1

)
. In this case, y1 = y2 but y3 is different. Thus, y3 was flipped during

transmission, so the original message is in y1.

(3) Py =

(
1
0

)
. In this case, y1 = y3 but y2 is different. So, like above, we conclude

that bit y2 was flipped, and the original message is in y1.

(4) Py =

(
1
1

)
. In this case, y1 differs from both y2 and y3. Hence, we conclude

y2 = y3 and the error lies in y1, so the original message is in y2.

Next, we generalize the generator matrix and parity checker matrix through examining
linear codes.

4. Linear Codes

In the first example of an error-correcting code, we dealt with vectors that represent
linear transformations of the message. So, we define linear codes as follows:

Definition 4.1. Suppose a source wishes to convey messages of length k through a
channel, which transforms the messages into codewords of length n. An error-correcting
code is linear if there exists an n × k generator matrix G such that every message x
is encoded as Gx.

What allows this code to correct errors? We again introduce the parity checker
matrix P .

Definition 4.2. For an error-correcting code, the parity checker matrix P exists
such that Py = 0 if and only if y has no errors.

Let’s look at an example. Suppose a source wishes to communicate a message using
the code with generator matrix

G =


1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

 .

The codewords corresponding to each source message are as follows:

Message Codeword
000 000000
001 001011
010 010101
011 011110
100 100110
101 101101
110 110011
111 111000



4 OLIVIA XU

Let’s consider parity checker matrix

P =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 .

Upon obtaining the transmitted codeword y, the receiver can compute Py to locate
the potential error. For example, suppose source originally sends the message 010, but
the receiver obtains the corrupted codeword y = 010100 (which contains an error in
the sixth bit). Then,

Py =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1



0
1
0
1
0
0

 =

0
0
1

 ,

so there is indeed an error. On the other hand, if the receiver had obtained the (correct)
codeword y = 010101, then

Py =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1



0
1
0
1
0
1

 =

0
0
0

 .

Observe that all valid codewords belong to the nullspace of P . This brings us to the
question of efficiency. How many codewords are in this nullspace? If the nullspace
comprises few codewords, then the source can send few messages. However, if the
nullspace comprises many codewords, then accurately decoding the received message
will prove difficult, especially as the number of errors increases. To quantify this, we
introduce the notion of Hamming distance.

Definition 4.3. The Hamming distance of two vectors v1 and v2, denoted by
d(v1,v2), is the number of bits in which they differ.

Definition 4.4. The minimum distance of a set of codewords S is min(d(v1,v2))
over all pairs of distinct v1,v2 ∈ S.

Suppose we have an error-correcting code with minimum distance d that encodes
messages of length k into codewords of length n. We aim to optimize this code by
specifically optimizing one parameter given the others. Why is this important? Max-
imizing d allows for more room for error correction as the error-correcting code can
correct a larger number of errors. Minimizing n allows for faster and cheaper trans-
mission of the message.



AN INTRODUCTION TO LINEAR ALGEBRA IN ERROR CORRECTING CODES 5

5. Hamming Codes

Now, we analyze Hamming codes, a family of linear codes, first introduced by Richard
W. Hamming in 1950 as a means of correcting errors in punched card codes. Hamming
codes are able to detect and correct one error. Therefore, for long messages, Hamming
codes are not efficient as long strings of bits are prone to more errors. However, as we
will see, Hamming codes are quite efficient.

First, we define that it means for a code to be efficient so we can better analyze
these codes.

Definition 5.1. Given a code that transmits messages of length k as codewords of
length n, the efficiency of the code is measured by k

n

We seek to maximize efficiency in a code (hence decreasing redundancy). For exam-
ple, our simple repetition code has a relatively low efficiency of 1

3
, whereas our second

example code has a higher efficiency of 3
6
= 1

2
.

Now, let’s take a look at the fundamental and widely popular Hamming (7, 4) that
adds three redundancy bits to each message of length 4. The Hamming (7, 4) has
generator matrix

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 1 0 1
1 0 1 1


and parity checker matrix

P =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 .

To show the Hamming (7, 4) is indeed an error-correcting code, consider a message

x =


x1

x2

x3

x4

 .



6 OLIVIA XU

Then, the source transmits the message

Gx =



x1

x2

x3

x4

x1 + x2 + x3

x1 + x2 + x4

x1 + x3 + x4


.

We calculate that HGx = 0, and observe that this is true if and only if Gx = 0.
Therefore, this code is a valid error-correcting code.

The Hamming (7, 4) has efficiency 4
7
> 1

2
. The general Hamming code, given a message

of length 2m− 1−m, adds m bits of redundancy to transmit a codeword of 2m− 1. As
m increases, the efficiency 2m−1−m

2m−1
tends to 1, which is much higher than our previous

codewords. Today, Hamming codes are widely used for computer modems and memory
for their efficiency.


	1. Introduction
	2. The Problem
	3. An Intuitive Solution
	4. Linear Codes
	5. Hamming Codes

