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Abstract. The goal of this paper is to prove the combinatorial Nullstellensatz, an algebraic technique
that has several applications in combinatorics, and can be applied through a process coined the Polynomial

Method in Combinatorics, with applications specifically in Additive Combinatorics, Graph Theory, the
Kakeya Set problem, and Cap Set problem.

1. What is the Polynomial Method?

The Polynomial Method in Combinatorics is a modern method used to solve a certain class of combinatorial
problems by rephrasing the combinatorial nature of the problem into algebraic terms by encoding it in a
polynomial. A basic outline of the method is the following:

(1) Associate the problem with some points of a vector space.
(2) Find the polynomial of minimal degree for which it vanishes on these points.
(3) Use the polynomial to settle the problem.

Notice that (3) is rather nontrivial – this is where we use Nullstellensatz, which we discuss in the following
section.

2. Combinatorial Nullstellensatz

A well-known theorem of Hilbert, called Hilbert’s Nullstellenatz, states that if F is an algebraically closed
field, and f, g1, . . . , gm are polynomials in the ring of polynomials F [x1, . . . , xn], where f vanishes over all
common zeros of g1, . . . , gm, then there is an integer k and polynomials h1, . . . , hm in F [x1, . . . , xn] so that

fk =

n∑
i=1

higi.

In a new Nullstellensatz devised by Alon in 1999 (see [Alo99]), a more specific case where m = n and each
gi takes the form

∏
s∈Si

(xi − s) is looked at, in which a stronger conclusion is claimed.

Theorem 2.1 (Combinatorial Nullstellensatz). Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a
polynomial in F [x1, . . . , xn]. Let S1, S2, . . . , Sn be nonempty subsets of F and define gi(xi) =

∏
s∈Si

(xi − s).

If f(s1, ..., sn) = 0 for all si ∈ Si), then there are polynomials h1, . . . , hn ∈ F [x1, . . . , xn] satisfying deg(hi) ≤
deg(f)− deg(gi) so that

f =

n∑
i=1

higi.

A second formulation of Nullstellensatz can be seen as follows.

Theorem 2.2. Let F be an arbitrary field, and let f = f(x1, ..., xn) be a polynomial in F [x1, ..., xn]. Suppose
the degree deg(f) of f is

∑n
i=1 ti, where each ti is a nonnegative integer, and suppose the coefficient of∏

i=1 xi
ti in f is nonzero. Then, if S1, . . . , Sn are subsets of F with |Si| > ti, there exist s1 ∈ S1, s2 ∈

S2, . . . , sn ∈ Sn so that f(s1, . . . , sn) ̸= 0.

The formulation in Theorem 2.2 is more well-used than in Theorem 2.1 in its applications. In particular, we
will always be using Theorem 2.2 in the problems that we solve in this paper.
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2.1. Introductory Consequences of Nullstellensatz. In this section, we will present two classical appli-
cations of the combinatorial Nullstellensatz: the Chevalley-Warning theorem (initially proved by Chevalley
in 1935) and the Cauchy-Davenport inequality (initially proved by Cauchy in 1813).

Theorem 2.3 (Chevalley-Warning). Let p be a prime, and let P1, . . . , Pm ∈ Fp[x1, . . . , xn]. If n >∑m
i=1 deg(Pi) and the polynomials Pi have a common zero (c1, . . . , cn), then they have another common

zero.

Proof. Assume for contradiction that (c1, . . . , cn) is the only common zero of the polynomials P1, . . . , Pm.
Then, define the polynomial of n variables f by

f(x1, . . . , xn) =

m∏
i=1

(1− Pi(x1, . . . , xn)
p−1)− δ

n∏
j=1

∏
c∈Zp,c̸=cj

(xj − c),

where δ is chosen so that f(c1, . . . , cn) = 0. Furthermore, it follows that δ ̸= 0 and that f vanishes on
(Zp)

n.

Finally, for all 1 ≤ i ≤ n, set ti = p−1 and Si = Zp; note that as the coefficient of
∏n

i=1 x
ti
i in f is −δ ̸= 0,

and f vanishes on S1 × · · · × Sn, Theorem 2.2 implies that f(s1, . . . , sn) ̸= 0 for some (s1, . . . , sn) ∈ (Zp)
n,

which contradicts the earlier obtained fact that f vanishes on (Zp)
n, and we are done. ■

Theorem 2.4 (Cauchy-Davenport). Given non-empty subsets A,B of Fp, for some prime p, the following
holds:

|A+B| ≥ min{p, |A|+ |B| − 1}.

Proof. When |A|+ |B| > p, the result is trivial, so it suffices to show that the result holds when |A|+ |B| ≤ p;
assume that |A|+ |B| ≤ p for the remainder of the proof.

Assume for contradiction that |A+B| < |A|+ |B| − 1. Choose some subset C of Zp with A+B ⊂ C and
|C| = |A|+ |B| − 2. Now, define the bivariate polynomial f by

f(x, y) =
∏
c∈C

(x+ y − c).

Notice that f vanishes over A× B as A+ B ⊂ C. Additionally, the coefficient of x|A|−1y|B|−1 in f(x, y) is(|C|−1
|A|−1

)
, which is nonzero in Zp. Hence, by setting t1 = |A| − 1, t2 = |B| − 1, S1 = A, and S2 = B, Theorem

2.2 yields a contradiction, which completes the proof. ■

3. Permanents

The Permanent Lemma is a reformulation of Theorem 2.2 in the context of permanents. The motivation
for doing so is to (with more ease) encounter problems that involve expressions that easily arise from an
element of a product of a matrix and a vector.

Lemma 3.1 (Permanent Lemma). Let A = (aij) be an n× n matrix over a field F such that its permanent
is nonzero over F . Then for any vector b = (b1, . . . , bn) ∈ Fn and for any family of subsets S1, . . . , Sn of
F , each of size at least 2, there is a vector x ∈ S1 × . . .× Sn such that for every i the ith coordinate of Ax
differs from bi.

The permanent-based proof of the following theorem due to Erdos, Ginzburg, and Ziv demonstrates
the utility of permanents in solving certain combinatorial problems. An alternative approach would be
considerably longer, including the proof that utilizes only the formulation in Theorem 2.2.

Theorem 3.2 (Erdos-Ginzburg-Ziv). For any prime p, any sequence of 2p − 1 members of Zp contains a
subsequence of cardinality p such that the sum of its members is 0 in Zp.

Proof. Consider the sequence a1, . . . , a2p−1 with all elements in Zp, and without loss of generality suppose
that 0 ≤ a1 ≤ a2 ≤ . . . a2p−1. Consider the (p − 1) × (p − 1) matrix A consisting entirely of 1s. Set
Si = {ai, ai+p−1} and ti = 1 for 1 ≤ i ≤ p − 1; given any vector b ∈ (Zp)

n, the permanent lemma ensures
that there exists a collection of p−1 elements of the subsequence such that they do not sum up to any of b’s
coordinates. Furthermore, no such collection ever has a2p−1 in it, and hence by letting all the coordinates of b
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be elements of Zp\{−a2p−1}, the permanent lemma applies to obtain that there exists some x ∈ S1×· · ·×Sn

with

a2p−1 +

p−1∑
i=1

xi ≡ 0 (mod p),

as required. ■

4. Graph Theoretic Applications

In this chapter, we survey two graph theoretic applications of the Polynomial Method, the first being
a generalization of a theorem of Taśkinov on subgraphs, and the second being a theorem of Alon on list
colorings.

4.1. Subgraphs. A well-known conjecture of Berge and Sauer, proved by Taśkinov in 1982, states that any
simple 4–regular graph contains a 3–regular subgraph. Though this false for graphs with multiple edges,
adding one extra edge suffices to ensure the existence of a 3–regular subgraph. A more general version of
this theorem can be seen to be proved rather quickly with the Polynomial Method.

Theorem 4.1. For any prime p, any loopless graph G = (V,E) with average degree bigger than 2p− 2 and
maximum degree at most 2p− 1 contains a p-regular subgraph.

Proof. For any edge e ∈ E, define its indicator xe as 1 when e is in the subgraph and 0 otherwise. Further-
more, for v ∈ V and e ∈ E, let av,e be 1 when v is incident to e and 0 otherwise. Note that, for fixed v ∈ V ,∑

e∈E av,exe ≡ 0 (mod p) is equivalent to stating that exactly p or no edges have been chosen. Define

f =
∏
v∈V

(1− (
∑
e∈E

av,exe)
p−1)−

∏
e∈E

(1− xe).

Notice that the first product is nonzero (1) if and only if for each v ∈ V , deg(v) ∈ {0, p}; the second product
is 1 if and only if no edges are picked, and 0 otherwise. All in all, f is zero unless the subgraph induced by
the selected edges is p–regular.

The degree of the first product is (p−1)|V |, although the degree of f is |E|, which is bigger than (p−1)|V |
by the average degree hypothesis1 so the coefficient of

∏
e∈E xe in f is nonzero. Hence Theorem 2.2 applies

by setting Si = {0, 1} and ti = 1 for 1 ≤ i ≤ |E|. ■

Notice that the aforementioned theorem of Taśkinov is the p = 3 case of Theorem 4.1.

4.2. List Colorings. We first recall the following definition concerning list colorings in Graph Theory.

Definition 4.2. A simple graph G is k-choosable if its possible to properly color its vertices given a list of
k colors at each vertex.

In this section we prove the following theorem (due to Alon) about choosability.

Theorem 4.3 (Alon). A bipartite graph G is ⌊L(G)⌋+ 1 choosable, where

L(G)
def
= max

H⊆G
|E(H)|/|V (H)|.

(Notice that L(G) is also half the maximum of the average degree of the subgraphs H of G.)

It is highly obscure how the Polynomial Method can be used to prove a result on list colorings; the key to
using it is to show that there exists an directed orientation of any nonempty graph G with certain conditions
we desire, and consider the graph polynomial of a directed orientation of G, whence we may exemplify the
use of combinatorial Nullstellensatz.

Definition 4.4 (Graph Polynomial). For a graph G, its graph polynomial is the polynomial fG defined by

fG(x1, . . . , xn) =
∏

(i,j)∈E(G)
i<j

(xi − xj).

1Since the average degree is bigger than 2p− 2 as assumed, it follows that |E| > 1
2
|V |(2p− 2) = (p− 1)|V |.
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We consider orientations of G as well; in this we simply direct each edge to obtain a directed graph, to
which Definition 4.4 applies. In an orientation, an edge v → w is ascending if v ≤ w. The parity of a graph
is determined as even if it has an even number of edges and odd if it has an odd number of edges.

Definition 4.5. Define DEG(d1, . . . , dn) to be the set of all even orientations of G in which vertex i has
indegree di, and define DOG(d1, . . . , dn) in a similar manner. Finally, we define DG = DEG(d1, . . . , dn) ∪
DOG(d1, . . . , dn).

We summarize the above terminology in the following lemma.

Lemma 4.6. The coefficient of
∏n

i=1 x
di
i in the graph polynomial of G is

|DEG(d1, . . . , dn)| − |DOG(d1, . . . , dn)|.

Proof. In the expansion of fG, each term corresponds to a choice of xi and xj for each (i, j) where i < j.
Furthermore, a term has coefficient +1 if its corresponding orientation is even, and −1 if its corresponding
orientation is odd. The conclusion follows, and we are done. ■

We now introduce Eulerian suborientations, which is a class of specific suborientations.

Definition 4.7. For some D ∈ DG(d1, . . . , dn), an Eulerian suborientation of D is a subgraph of D in which
every vertex has equal indegree and outdegree. We say that such an Eulerian suborientation is even if it has
an even number of edges, and odd if it has an odd number of edges. Furthermore, denote the sets of even
and odd Eulerian suborientations of D by EE(D) and EO(D), respectively.

The following lemma establishes the interrelation of DEG and DOG with EE(D) and EO(D).

Lemma 4.8. If D ∈ DEG(d1, . . . , dn), then there are bijections

DEG(d1, . . . , dn) → EE(D)

DOG(d1, . . . , dn) → EO(D).

Similarly, if D ∈ DOG(d1, . . . , dn) then there are bijections

DEG(d1, . . . , dn) → EO(D)

DOG(d1, . . . , dn) → EE(D).

Proof. Consider any orientation D′ ∈ DG(d1, . . . , dn). Let D ⋆ D′ be the suborientation of D by including
exactly the edges of D whose orientation in D′ is in the opposite direction. This establishes a bijection
f : DG(d1, . . . , dn) → EEG(D) ∪ EOG(D). Finally, realize that D ⋆ D′ is even if D and D′ are both even or
both odd, and is odd otherwise. The desired result follows. ■

But why is Lemma 4.8 useful? Because when substituted in Lemma 4.6, we have the following:

Lemma 4.9. The coefficient of
∏n

i=1 x
di
i in the graph polynomial of G is

±(|EE(d1, . . . , dn)| − |EO(d1, . . . , dn)|).

Proof. Note that the bijections in Lemma 4.8 preserve cardinality, and then apply Lemma 4.6 to finish. ■

Lemma 4.9 is sufficient for Theorem 2.2 to be applied, which justifies the introduction of Eulerian suborien-
tations in the first place.

Theorem 4.10. Let G be a graph on {1, . . . , n}, and let D ∈ DG(d1, . . . , dn). If |EE(D)| ≠ |EO(D)|, then
G is (1 + maxi di)-choosable.

Proof. We wish to, given (1 +maxi di) colors, properly color G with the properties assumed in the theorem

statement. Then, because |EE(D)| ≠ |EO(D)|, the coefficient of
∏n

i=1 x
di
i in fG is nonzero. Regarding the

colors as real numbers, let Si be the set of colors at vertex i so that |Si| = 1 + di for 1 ≤ i ≤ n. Hence,
by Theorem 2.2, one can select a color from each Si so that fG does not vanish, from which the conclusion
follows. ■

It remains to find an orientation in which each indegree is at most ⌈L(G)⌉. We prove this as a technical
fact below.
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Theorem 4.11. Let G be a nonempty graph. Then, G has an orientation in which every indegree is at most
⌈L(G)⌉.

Proof. Let E = E(G) and define
X = V (G) ⊔ V (G) ⊔ . . . ⊔ V (G)︸ ︷︷ ︸

⌈L(G)⌉ times

.

Construct the bipartite graph E ∪X, where we connect e ∈ E to v ∈ X if v is an endpoint of e. By Hall’s
marriage theorem, we can match each edge in E to some vertex in X; as there are exactly ⌈L(G)⌉ copies of
each vertex in X, the statement follows. ■

Using the machinery of Theorems 4.10 and 4.11, we prove the final theorem.

Proof of Theorem 4.3. By Theorem 4.11, we can select D ∈ DG(d1, . . . , dn) where maxi di ≤ ⌈L(G)⌉. Since
G is bipartite, EO(D) = ∅, so Theorem 4.10 applies and completes the proof. ■

5. Finite Field Kakeya Conjecture

A well-known problem in geometric measure theory is the Kakeya conjecture. The motivation behind its
proposal began with the Kakeya needle problem.

Question 5.1 (Kakeya needle problem). What is the least area in which a line segment of width 1 can be
freely rotated?

In 1928, Besicovitch showed that there is no minimum area, or that the needle can be rotated using an
arbitrarily small amount of positive area. His proof relied on the fact that translating the needle requires a
set of zero measure. While Besicovitch’s observation closed the question in R2, the question of whether a
construction exists in Rn, as of the time of this writing, is still open. At the center of this generalization is
the notion of a Kakeya set.

Definition 5.2. A Kakeya set K ⊆ Rn is a set such that for all y ∈ Rn, there is a line with direction y that
is contained in K.

Now, the conjecture is as follows:

Conjecture 5.3 (Kakeya conjecture). Every Kakeya set K of Rn has Minkowski dimension and Hausdorff
dimension equal to n.

In 1999, Wolff proposed a analogous finite field version of the above conjecture (see Corollary 5.6) intended
to be simpler, which was later proved by Dvir in 2008. We prove a more general version of it in Theorem
5.5, due to Tao and Alon (see [Tao13]), who modified Dvir’s argument to arrive at its statement. First, we
must define Kakeya sets in Fn.

Definition 5.4. A Kakeya set K ⊆ Fn is a set such that for all y ∈ Fn, there is a line with direction y that
is contained in K.

Theorem 5.5 (Finite Field Kakeya Conjecture, Tao and Alon). Let K ⊆ Fn
q be a Kakeya set. Then

|K| ≥
(
q+n−1

n

)
.

Proof. Assume to the contrary that |K| <
(
q+n−1

n

)
. A “stars and bars” argument implies that there exists

a nonzero polynomial f ∈ F[x1, . . . , xn] of degree at most q − 1 that vanishes on the whole of K.

Note that K is a Kakeya set, and so for each nonzero direction v ∈ Fq
n, there exists some point x such

that for all t ∈ F, f(x + tv) = 0. We can define g(t) by g(t) = f(x1 + tv1, . . . , xn + tvn). Now let tdfd(v)
be the polynomial with maximal number of monomials, all of which have degree greater than or equal to
d. Note that for fixed x and v, g is zero for all t. As g has degree less than q, fd(v) = 0. Thus, fd is a
polynomial of degree at most q − 1 vanishing on the whole of Fn

q .
Now we finish with combinatorial Nullstellensatz: set ti = q − 1 and Si = Fq for 1 ≤ i ≤ n, so that there

is a nonzero homogenous polynomial of degree less than q that vanishes on S1 × · · · × Sn, however, taking
into consideration of any of its terms with a nonzero coefficient yields a contradiction to Theorem 2.2, as
desired. ■
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We may prove the initial proposal of the conjecture, as a consequence of Theorem 5.5.

Corollary 5.6. Let K ⊆ Fn
q be a Kakeya set. Then |K| ≥ cnq

n, where cn > 0 does not depend on q.

In particular, by letting cn = 1
n! and noting that

(
q+n−1

n

)
≥ qn

n! , we see that Corollary 5.6, as initially
proven by Dvir, is indeed true.

6. The Cap Set Problem

We give an introduction with the game of SET ([Aus16]). In the game of SET, we have a deck of 81
cards, and each card has one out of three values for several features. (These features can be things such as
color, shape, shadowing, and number of the objects.) The objective of the game is, given a small subset of
the deck, to find a set of 3 cards such that for each individual feature, the values of the cards are either the
same or all different. But in reality, SET is just a collection of all elements in (Z/3Z)4, and we want to find
a three-term arithmetic progression. Furthermore, we can generalize this by considering elements of (Fq)

n,
to arrive at a game called Cap Set. The Cap Set problem concerns the sizes of subsets of (Fq)

n that contain
no three-term arithmetic progressions. First, we define the following:

• Mn: monomials of n variables with degree in each variable at most q − 1.
• Md

n: subset of Mn formed by monomials of total degree at most d.
• Sn: Fq-vector space spanned by Mn.
• Sd

n: subspace of Sn formed by polynomials of total degree at most d.
• md: dimSd

n.

The main theorem is the following.

Theorem 6.1 (Cap Set Problem). Let α, β, γ be elements of Fq such that they sum to zero and γ ̸= 0. Let
A ⊂ Fn

q such that

α · a1 + β · a2 + γ · a3 = 0

has no solutions (a1, a2, a3) ∈ A3 except when a1 = a2 = a3. Then |A| ≤ 3m(q−1)n/3.

As this theorem has a highly involved proof, we present a sketch of it below. As opposed to the other
problems studied in this paper, this one does not require the use of combinatorial Nullstellensatz, and instead
uses the idea of the support of a polynomial and the Extremal Principle.

Proof. Let d be an integer between 0 and (q− 1)n, inclusive, and let V be the set of polynomials in Sd
n van-

ishing on (−γA)c = X; using basic linear algebra, one can show that V has dimension at least md−qn+ |A|.
Let S(A) = {g ∈ Fn

q : g = αa1 + βa2}. The technical fact that S(A) and γA do not intersect holds, so all
f ∈ V vanish on S(A). Therefore, if Σ is the support of f ∈ V , then |Σ| ≤ 2md/2.

Furthermore, by picking f ∈ V with maximal support, we claim |Σ| ≥ dim(V ). To prove this, assume
to the contrary that |Σ| < dim(V ). Then, take nonzero g such that g vanishes on Σ. Note that f + g is
nonzero on Σ, and thus there is some point s ̸∈ Σ at which it is nonzero, so f + g is also nonzero at s. This
constructs an element of V with larger support than f , which contradicts the maximality of the support of f .

Since |Σ| ≥ dim(V ) and |Σ| ≤ 2md/2, so |Σ| ≤ 2md/2. Choosing d = 2(q − 1)n/3, we have |A| ≤
2m(q−1)n/3 + qn − m2(q−1)n/3. Recall from the previously defined definitions, qn − md is the number of

monomials of Mn such that they are of degree strictly larger than d. Note that the bijection xd1
1 · · ·xdn

n 7→
x
(q−1)n−d1

1 · · ·x(q−1)n−dn
n allows us to write qn −md ≤ m(q−1)n−d. Hence,

|A| ≤ 2m(q−1)n/3 + qn −m2(q−1)n/3 ≤ 2m(q−1)n/3 +m(q−1)n/3 = 3m(q−1)n/3,

as desired. ■

In order to achieve a stronger bound on |A|, we must bound m(q−1)n/3. One way to do so involves a
probabilistic approach – let X1. . . . , Xn be iid discrete random variables taking values on {0, 1, . . . , q − 1}
with uniform probability. Then,

P
( n∑

i=1

Xi ≤
n(q − 1)

3

)
= m(q−1)n/3/q

n
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from which it follows that

P
( n∑

i=1

Xi

n
≤ (q − 1)

3

)
= m(q−1)n/3/q

n.

Now, one can view this as a large deviations problem and apply Cramer’s theorem to obtain a bound of
O(2.756n).
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