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Any real square matrix A can be decomposed into a product of an orthogonal
matrix Q and an upper triangular matrix R; such a decomposition is called
QR-decomposition. There are various ways to find Q and R, and in particular,
the one I will talk about in this paper is called the Gram Schmidt algorithm.
It is worth noting that the Gram Schmidt algorithm is not the only way to
find suitable Q and R: we could’ve also used Householder transformations and
Givens rotations.

1. Definitions

Before we begin discussing the Gram Schmidt decomposition, it is worth
establishing some standard definitions that we will use later in the paper. The
first is that of an inner product, for which we say that:

⟨a, b⟩ = aTB.

The second definition is that of a projection, for which we denote:

projb a =
⟨b, a⟩
⟨b,b⟩

b.

2. Gram Schmidt Decomposition

To perform the Gram Schmidt decomposition on an arbitrary n × n real
square matrix A, let the column vectors be v1,v2,v3, . . . ,vn. Denote for 1 ≤
k ≤ n:

uk = vk −
k−1∑
j=1

projuj
vk.

ek = uk ·
1

||uk||
.

We can let our matrix Q to be

Q =
[
e1 e2 · · · en

]
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and R to be

R =


⟨e1, a1⟩ ⟨e1, a2⟩ ⟨e1, a3⟩ · · · ⟨e1, an⟩

0 ⟨e2, a2⟩ ⟨e2, a3⟩ · · · ⟨e2, an⟩
0 0 ⟨e3, a3⟩ · · · ⟨e3, an⟩
...

...
...

. . .
...

0 0 0 · · · ⟨en, an⟩

 .

The central claim is that not only is Q an orthogonal matrix, but that more-
over, Q ·R = A. This is the crux of the Gram Schmidt decomposition algo-
rithm. We will prove that it actually works later on in this paper.

Note. The Gram Schmidt decomposition algorithm also provides a way to nu-
merically compute the determinant of a matrix. To see this, notice that if we
makeQ have strictly positive diagonal entries, then det(QR) = det(Q) det(R) =
det(R) since Q has determinant 1 by virtue of being orthogonal. Since R is
upper diagonal, its determinant is simply the product of its diagonal elements,
which can easily be computed. The complexity of using this method to com-
pute the determinant is O(N3), which is no better than the naive method.

For now, let’s start with an example.

2.1. Example. Suppose we want to apply QR decomposition to the following
matrix

A =

1 1 1
0 1 1
1 1 0

 .

Let us denote the column vectors

v1 =

10
1

 ,v2 =

11
1

 ,v3 =

11
0

 .

Performing Gram–Schmidt, we see that:

u1 = v1 =

10
1

 .

u2 = v2 − proju1
v2 =

11
1

− 2

2

10
1

 =

01
0

 .

u3 = v3 − proju1
v3 − proju2

v3 =

11
0

− 1

2

10
1

− 1

1

01
0

 =

 1
2
0
−1

2

 .
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We can normalize u1,u2,u3 into e1, e2, e3 after the fact:

e1 =


√
2
2
0√
2
2

 , e2 =

01
0

 , e3 =


√
2
2
0

−
√
2
2

 .

As such,

R =

⟨e1 , a1⟩ ⟨e2 , a2⟩ ⟨e1 , a3⟩
0 ⟨e1 , a2⟩ ⟨e2 , a3⟩
0 0 ⟨e3 , a3⟩

 =


√
2

√
2 1√

2

0 1 1
1√
2

0 − 1√
2


and

Q =

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2
.


We can verify that Q is indeed orthogonal and that R is indeed upper trian-
gular.

Thus, it does indeed work for the example before, but what about more
generally?

Claim 2.1. When 1 ≤ i < j ≤ n, ⟨ei, ej⟩ = 0. That is, Q is an orthogonal
matrix.

Proof. To show this, we can use induction on n, the size of our source matrix
A. When n = 1, it is trivially clear that the inductive hypothesis holds, so we
can proceed to the case when n > 1:

⟨ei, en⟩ = ⟨ei,vn −
n−1∑
k=1

projek vn⟩

= ⟨ei,vn −
n−1∑
k=1

ek ·
⟨ek , vn⟩
||ek||

⟩

= ⟨ei,vn⟩ − ⟨ei,
n−1∑
k=1

ek
⟨ek , vn⟩
||ek||

⟩

We know by our inductive hypothesis that ⟨ei, ej⟩ = 0 when i ̸= j and that
⟨ei, ej⟩ = 1 when i = j. As such, we see that:

⟨ei, en⟩ = ⟨ei,vn⟩ − ⟨ei,

n−1∑
k=1

ek
⟨ek , vn⟩
||ek||

⟩

= ⟨ei,vn⟩ − ⟨ei,vn⟩
= 0,
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from which it follows that Q is indeed orthogonal. ■

Theorem 2.2. If A has nonzero determinant, then A has a unique QR de-
composition with positive diagonal elements in R.

Proof. To see why this is the case, assume by sake of contradiction that A =
Q1R1 = Q2R2 for distinct matrices Q1 and Q2. Then, suppose we define a
matrix M such that:

M = R1R2
−1 = Q1

−1Q2.

Then, we can write:

AAT = (Q1R1)
T Q1R1 = R1

TQ1
TQ1R1 = R1

TR1,

where we utilize the fact that Q1
TQ1 = I, since Q1 is orthogonal. However,

we can also write

AAT = (Q2R2)
T Q2R2 = R2

TQ2
TQ2R2 = R2

TR2,

where we again utilize the fact that Q2 is also orthogonal.
This would imply that the Cholesky decomposition isn’t unique, since we

can write AAT in two ways as a product of upper triangular matrices. Since
this cannot be the case, our original assumption that Q1 and Q2 are unique
must be mistaken. Thus, we must have a unique QR decomposition. ■

3. Applications to Least Squares

The least squares problem asks us to find the x for which ||Ax − b|| is
minimized. In other words, we’d like to minimize

||Ax− b|| = (Ax− b)T (Ax− b) = xTATAx− xTATb− bTAx+ bTb.

To minimize this, we need the derivative with respect to x to be 0, so we need

2ATAx−ATb− bTA = 0 ⇐⇒ ATAx = ATb ⇐⇒ x = (ATA)−1ATb.

Now, of course, we can always find x by finding the inverse ofAT ·A. However,
we could also do it differently, using QR decomposition. If we let A = QR,
then it becomes

(QR)TQRx = (QR)T b ⇐⇒ RTQTx = (QR)Tb ⇐⇒ RTRx = RTQTb.

Thus, we can solve
Rx = QTb

instead, which can be solved with back substitution, by virtue of R being
a square matrix. This is guaranteed to yield the x for which ||Ax − b|| is
minimized without using matrix inverse.
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