
Error-Correcting Code

Ken Lee

Abstract

In this expository paper, we will work with a special class of code called linear
code, and construct methods of checking whether or not a certain linear code C is
error-correcting or not. Our criteria for error-correcting codes will be that C must
detect errors and correct them. Our primary focus will be on single-bit errors during
transmission, but we will also provide a basic idea of characterizing how to detect and
correct multiple errors.

1 F2 and the Field of Bits

To talk about code, we need to talk about binary systems. In our usual representation of
numbers, we have:

314 = 3 · 102 + 1 · 101 + 4 · 100.
However, we can also write 314 as the sum:

314 = 1 · 28 + 0 · 27 + 0 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20.

Generally, we can write a number x ∈ Z as the sum x =
∑n

i=0 ai10
i, where ai are numbers

in the set {0, .., 9}. This is the denary expansion we are familiar with, but there is also a
way for us to write x as x =

∑m
i=0 bi2

i, where bi are numbers in the set {0, 1}. This is what
is known as binary expansion.

Example. The number 314 is written as 1001110110 in binary, where the nth digit in the
binary representation corresponds to whether or not we add 2n−1. Naturally, 1 corresponds
to adding, and 0 corresponds to doing nothing.

Computers are basically a large combination of switches and electrical signals which are
either on or off. Thus, the binary system becomes incredibly useful in conforming to these
Boolean rules, allowing computers to do a wide range of arithmetic. The way this arithmetic
is defined is as follows:

i. 0 + 0 = 0

ii. 0 + 1 = 1

iii. 1 + 1 = 10

where these numbers are written in binary representation. Essentially, this just translates
to:

1

i. 0 + 0 = 0

ii. 0 + 1 = 1

iii. 1 + 1 = 2

in terms of our more familiar denary tongue.

Example. 1001 + 1011 = 10100 in binary, which translates to 9 + 11 = 20 in denary.

When computers send messages, they send a binary number. Next, let us define addition
and multiplication for an individual bit. This is more useful than considering these operations
for full binary numbers since it will be easier to work with using Linear Algebra. We
define addition as the same, except for rule iii., where we take 1 + 1 = 0 instead. For the
multiplication of bits, we have:

i. 0 · 0 = 0

ii. 0 · 1 = 0

iii. 1 · 1 = 1

where we have commutativity and associativity as we do with addition.
Note that with these rules of addition and multiplication, we get that the set of bits

form the field F2, which is great, because in order to do linear algebra, we need a field and
a vector space. That vector space in this case will be the vector space Fn

2 , where this space
has vectors that are essentially n-bit messages.

Let us try some basic linear algebra with F2 and Fn
2 :

Example. x+y = 0 and x−y = 1 is a system of equations with no solutions. This is because
−y = y for all y ∈ F2 by rules of addition, and thus we simplify the system of equations into
x+ y = 0 and x+ y = 1.

Example. x+ y = 1 implies that x = x+ (y + y) = 1 + y.

Example. We can multiply matrices whose elements are in F2 the same way we multiply
matrices whose elements are in R or C:(

1 1 0
0 0 1

)1 0
1 0
0 1

 =

(
1 · 1 + 1 · 1 + 0 · 0 1 · 0 + 1 · 0 + 0 · 0
0 · 1 + 0 · 1 + 0 · 0 0 · 0 + 0 · 0 + 1 · 1

)
=

(
0 0
0 1

)
.

Example. Let P be any matrix of any finite dimension over F2. P + P = 0 by addition in
F2.

Now that we have gotten used to using F2, let us move onto methods of correcting code.

2

2 Basic Error-Correcting Methods

As much as we want them to be, computers are rarely perfect. Sometimes, when data is
being sent back and forth, a bit of the information can change from a 1 to a 0. This can
happen for a variety of reasons. One such reason is the particles in cosmic rays. A famous
example of this was during a Mario 64 speedrun. Here, cosmic rays hit a Nintendo 64 and
switched a bit by altering the electrical signals within the circuitry. This then caused Mario
to suddenly jump up to a platform, saving a tremendous amount of time in the speedrun. It
would be very hard to prevent these types of errors, but there are plenty of ways for receivers
of information to know when a bit has been changed.

Before talking about these methods, let us first set some definitions.

Definition 2.1 (Code). A code C of length n is a subset of Fn
2 . Elements c ∈ C are called

codewords in C, and the collection of all codewords is called a codebook.

Definition 2.2 (Encoding). A function e : Fk
2 → Fn

2 is an encoding map, if all messages in
Fk
2 are sent this way to a codeword in e(Fk

2); i.e. if range(e) = C for some code C ⊂ Fk
2.

Consider the simple example of sending the message 0. We can repeat this message three
times to get 000, which is represented as the vector (0, 0, 0). Here, our encoding map is just
e(x) = (x, x, x). Let us say that this message is received as 001, and the receiver knows that
only 1 bit has changed. Then obviously, the correct message can be deduced as 000, and
hence 0 by the sender. However, if the receiver isn’t sure that only 1 bit has changed, then
they won’t know if 001 is a 2-bit change of 111 or a 1-bit change of 000.

Another way of dealing with errors is with what is called a parity check. Consider the F2
2.

Let us use the encoding map e(x, y) = (x, x, y, y, x+ y), where we repeat each bit twice and
include what is called a parity bit in the right-most digit. If we send 01, then the correctly
received codeword would be 00111, with parity bit 1. Suppose that due to an error, the
receiver gets the codeword 00011. Knowing that at most 1 bit has been altered, the receiver
knows that they should have either 00111 or 00001. However, with the parity bit, they can
confirm that the correct codeword is 0011, as 0000 does not produce the parity bit 1. A neat
interpretation of the parity bit is counting the number of 1s and seeing if the number is odd
or even; i.e. the parity.

Proposition 2.3. The parity bit is 1 if there is an odd amount of 1s in the message being
encoded, and 0 if there is an even amount.

Proof. Let c ∈ Fn
2 be a message with an odd amount of 1s and write c = (c1, ..., cn). Then

the parity bit is calculated by
∑n

i=1 ci, which simplifies to the sum of 1s since the cj = 0s
don’t matter. This then further simplifies to just 1, as any pair of 1s add up to 0, and there
will be one 1 that is left in the end.

Let us repeat the previous example of sending the message 01 with the encoding map
e(x, y) = (x, x, y, y, x + y). If the receiver gets 11001 but doesn’t know that at most 1 bit
has been altered this time, then the parity bit becomes useless. The received code is what
would be expected from e(1, 0), as the repeated bits and the parity bits are correct, and thus
the receiver would conclude that 10 is the intended message. In general, whenever an even

3

amount of bits changes, the parity doesn’t, so parity checks become redundant. One way of
fixing this is known as a block parity check; this is essentially a 2-dimension parity check,
but we will not get into this method.

3 Linear Codes and the Generator Matrix G

There are a variety of ways of getting around the problems that arise with parity checks.
One of these methods involves what is called a Generator Matrix, but to talk about this
method, we have to use a special class of code.

Definition 3.1 (Linear Code). A code C ⊂ Fn
2 is called linear code if C is a subspace of Fn

2

over the field F2.

Example. {0} is a code, but not a linear code of F2. {0, 1} is a linear code of F2, as it is
exactly F2, which is a vector-space over the field F2.

Example. Let ei represent the vector in Fn
2 with a 1 in the ith entry, and 0 elsewhere. Then

span(e1, e2) is clearly a linear code of length n.

The switch from considering subsets to linear subspaces proves to be incredibly useful, as
we are doing Linear Algebra after all. Since linear codes satisfy properties of a vector space
or a subspace, there must exist some basis c = {c1, ..., ck}. Then, every message that we
wish to encode can be written as a linear combination of the basis vectors. This doesn’t do
much good unless our encoding map itself preserves this linearity; i.e. unless the encoding
map is a linear transformation. There are many ways to define linear transformations with
a given basis, but the most useful way defines the Generator Matrix G:

Definition 3.2 (Generator Matrix). Let C ⊂ Fn
2 be a linear code of length k. A linear

transformation T : Fk
2 → Fn

2 is called the Generator of C if the columns of G = M(T) form
a basis of C. We call the matrix G the Generator Matrix.

Note that by the definition, we have range(G) = C, and that G is an n× k matrix.
Let us specify linear codes C with [n, k], where n is the length of the codewords, and k

is the length of the messages, which is also the dimension of C.
Furthermore, note that for a codeword of [n, k] code, only k bits of information really

matter, as they are the k bits of the message being encoded. We shall now refer to the
remaining n − k bits as check bits when necessary. Examples of check bits were the parity
bit or the repetition bits.

Let us consider an example of G:

Example. Consider the Generator T of the linear-[4, 3] code C = span(e1, e2, e3). We have:

G =

1 0 0
0 1 0
0 0 1
0 0 0

 =

(
I3
0

)
.

4

In this example, G is written in what is called systematic form, where we have G =(
Ik A

)T
for some matrix A that is k × (n − k). For any basis we choose, we can always

simplify the matrix in this form. This comes from the fact that column operations do not
change the column space:

Proposition 3.3. Let A be an m × n matrix, and let E be a column operation. Then
range(A) = range(AE).

Proof. The column operation E will scale a column or add two scaled columns together,
or switch columns. Let v1, ...,vn be the columns of A. If the column operation adds two
scaled columns, WLOG we can assume that we get λv1 + µv2. Then our new matrix AE
has columns λv1 + µv2,v2, ...,vn. Note that the span of these new columns is exactly the
same as the span of the original columns. If the column operation switches two columns,
then clearly the span is also not changed. If the column operation scales a column, then
clearly the span is not changed. Thus range(A) = range(AE)

Note that by taking the transpose, we have the same argument for row operations.
Additionally, we will need:

Proposition 3.4. Let A be an m×n matrix and R its Reduced Column Echelon form. Then
the rank r of A is the number of pivots p in R.

Proof. First, note that the dimension of the output space of R is just the number of pivots.
The Reduced Column Echelon form is achieved by applying column operations to A. Thus
R = AE1 · · ·Ek for some column operations E1, ..., Ek, and by Prop 3.3., we have r =
dim range(A) = dim range(R) = p.

Proposition 3.5. Every linear-[n, k] code admits a systematic generator matrix.

Proof. Let C be a linear[n, k] code with basis c1, ..., ck. Then G is rank-k, and thus the
Reduced Column Echelon form R of G has k pivots by Prop 3.4.. Thus we can apply

column-switching operations to R to get some matrix of the form G′ =
(
Ik A′)T . Since

column operations do not change the output space by Prop 3.3., we have that range(G) =
range(R) = range(G′) = C. Then columns of G′ must be a basis of C, making G′ a Generator
Matrix for C.

Now that we know how to use simple G for practical computation and application, let
us look at how we can use G to check for errors in transmission.

The idea behind using G and linear codes is to check whether the received code is a
codeword or not. For regular code, this is not so simple, as there’s no ”rule” to follow. For
linear codes, there are many rules: the rules of linearity and the rules of being in a vector
space.

Suppose that we send a message x ∈ Fk
2 with the Generator Matrix G of linear-[n, k]

code C. We send a code word y ∈ C. Suppose that for now, only one error has occurred;
i.e. only one bit has switched. Then the receiver gets y + ei for some 1 ≤ i ≤ n. If this is
a codeword of C, then we can decompose it into a linear combination of G’s columns, and
that will give us a message x′ the scalars in the combination.

Thus, we need to make sure that y + ei is not a codeword, so we don’t mistake x with
x′. Since y is a codeword, this just means that we can’t have ei as a codeword.

5

Condition 3.6. For C to be an error-correcting linear-[n, k] code, the Generator Matrix G
must have the following property:

ei /∈ range(G) = C for every i, where ei are the standard basis vectors in Fn
2 .

We can interpret this condition in a very simple way. Let us consider G in its systematic
form. If ei is never in the column space, then that just means that the matrix A in G =(
Ik A

)T
is nonzero. This means that when we do Gx, the last n− k bits won’t always be

0. Recall that there are n − k check bits, so this is just saying that for an error-correcting
code, we need to include check digits, which is pretty intuitive.

Example. Suppose we use the matrix

G =

1 0 0
0 1 0
0 0 1
0 0 0

to send two messages 101 and 100. The receiver then gets the codewords 1010 and 1000.
However, if the second codeword has an error with 1000 + e3 = 1010, then it is impossible
to know if the correct messages are 101, 101 or 101, 100.

Example. Suppose we use

G =

1 0 0
0 1 0
0 0 1
1 1 1

to send two messages 101 and 100. This time, note that no standard basis vector is in the
output space. The codewords should be 1010 and 1001. If an error occurred and the receiver
got 1010 and 1001 + e3 = 1011, then this time, since 1011 isn’t in range(G), the receiver
knows that there had to be an error here during transmission. For this specific G, not that
we have our check bit as the parity bit. Thus, the receiver knows that the correct codewords
can be 1001, 1111, 0011. Note that 1111 is also in range(G) but not the correct codeword.
Thus Condition 3.6. itself is not enough to correct errors.

Next, we need to consider when we know that there is an error with y+ ei, but we don’t
know which ei causes the error. We can fix this by adding ej to get y+ ei + ej and running
through all j until we get something that is a codeword. However, if there are multiple ej
that make y+ei+ej a codeword, there is no way to know which one should be the correctly
received codeword. Thus, we need to make sure that if y + ei + ej is a codeword, there is
only one such ej that allows it to be. Then we would naturally have y + ei + ej = y or
equivalently, i = j, by Condition 3.6..

Condition 3.7. For C to be an error-correcting linear-[n, k] code, the Generator Matrix G
must have the following property:

For all x ∈ Fk
2, Gx+ ei + ej ∈ range(G) = C implies that ei = ej.

6

In other words, if we can fix an error into a codeword by switching some bit, then that
bit is where the error occurred. If our Generator Matrix can’t allow this condition, then we
won’t have an error-correcting code.

Example. Let us go back to our matrix

G =

1 0 0
0 1 0
0 0 1
1 1 1

and send the messages 101 and 100. Let us consider the same error, where the codewords
are received as 1010 and 1001 + e3 = 1011. We know from using Condition 3.6. that 1011
is the error, but from that condition alone we don’t know where the error is. Now, by using
Condition 3.6., we can precisely find the error. 1011 + e1 = 0011 is not a codeword as it is
not in the output space. 1011+ e2 = 1111 is also not in the output space. 1011+ e3 = 1001
is in the output space. Thus by Condition 3.7., the error must have been 1001+e3, meaning
the correct codeword must be 1001.

With the current two conditions, we can locate an exact error, and get the correct y
codeword. The final step now is solving Gx = y, but unless the solution is unique, the
receiver might not always get the correct message. Thus all equations Gx = y must have
only one solution. In other words:

Condition 3.8. For C to be an error-correcting linear-[n, k] code, the Generator Matrix G
must be injective. That is, it must have the following property:

Gx = Gx′ if and only if x = x′.

In summary, we have:

Theorem 3.9. C is an error-correcting linear-[n, k] code if and only if it’s Generator Matrix
G has the following properties:

1. ei /∈ range(G) = C for every i, where ei are the standard basis vectors in Fn
2 .

2. For all x ∈ Fk
2, Gx+ ei + ej ∈ range(G) = C implies that ei = ej.

3. Gx = Gx′ if and only if x = x′.

From these conditions, we can concur a variety of nice corollaries. One nice one is as
follows:

Corollary 3.10. Fk
2 is not an error-correcting linear-[k, k] code.

This is easily proven by looking at number 2 in Theorem 3.9, however also by the fact
that our Generator is an isomorphism. If we have an isomorphism, then any errors made
with codewords will produce new codewords due to surjectivity. Then receivers will never
know that an error was made since the new codeword has a unique corresponding message
by injectivity.

7

4 Detecting Multiple Wrong Bits

So far, we have been dealing with the generous case of only 1 bit switching during trans-
mission. However, in reality, this is a tall demand. Thus, we need to be more realistic.
Luckily, the conditions for creating error-correcting code that detects multiple errors aren’t
so difficult; it shares a lot of similarities with the 1-bit case.

To investigate this general case of multiple errors, it will be beneficial to study a more
mathematical and or abstract formulation of code and error-correcting code. We introduce
what is called the Hamming Distance:

Definition 4.1 (Hamming Distance). The Hamming Distance ∆(x,y) between two strings
is the number of positions at which the two strings differ. That is,

∆(x,y) = |{i : xi ̸= yi}|.

For strings in Fn
2 , ∆(x,y) is the number of 1s in x+ y.

Note that this defines a clear metric on Fn
2 . Next, we define the distance of a code C:

Definition 4.2 (Code Distance). Let C be a code. The distance of the code, ∆(C) is defined
as the minimum hamming distance between two distinct codewords. That is,

∆(C) = min
x,y∈C
x ̸=y

∆(x,y).

With this notation, we get a very nice generalization of our work so far.

Theorem 4.3. Let C be some code. Suppose that ∆(C) = t. Then we have:

1. C can be used to detect at most t− 1 errors.

2. C can be used to uniquely correct at most t−1
2

errors.

Proof. Suppose that a code C ⊂ Fn
2 has ∆(C) = t. To prove that at most t − 1 errors can

be detected, we need to prove that changing at most t− 1 positions of a codeword can never
create another codeword. Suppose that changing at most t − 1 positions of a codeword y
does create a codeword z. Then:

t = ∆(C) ≤ ∆(y, z) ≤ t− 1

which is a contradiction. Thus changing at most t − 1 bits in a codeword doesn’t create
another codeword, meaning we can detect up to t− 1 errors. If at most t−1

2
errors occur, the

receiver can uniquely decode the received message to a codeword as every received message
has at most one codeword at distance t−1

2
. Suppose that every received message z has at

least two codewords at distance t−1
2
, say, x,y. Then we have by the Triangle Inequality that:

t− 1 = ∆(y, z) + ∆(x, z) ≥ ∆(x,y) ≥ ∆(C) = t

which is a contradiction. Thus every message has at most one codeword that is of distance
t−1
2

apart, meaning that up to t−1
2

errors can be corrected as a unique codeword exists for
the error-ridden received message.

8

From this theorem, it is clear that if we want to correct more and more errors, or even
detect them, we need larger and larger code and hence longer and longer codewords.

Let’s consider what this theorem means it terms of our investigations with linear code
and Theorem 3.9. and its conditions. If the linear-[n, k] code C has a minimum Hamming
Distance of t, then what does that say about summing up at most t − 1 standard basis
vectors?

In Theorem 3.9., the idea was that ei was never a codeword. The idea with Theorem
4.3. in terms of linear C is that the sum of at most t− 1 basis vectors cannot be a codeword
other than 0.

Proposition 4.4. Let C be a linear-[n, k] code that is error-correcting. To detect at most
t − 1 errors, we require that a sum of at most t − 1 standard basis vectors can only be the
0-codeword, and no other codeword.

Proof. Suppose that there was a sum of at most t − 1 basis vectors that was a nonzero
codeword. Call this sum v. Then ∆(v,0) ≤ t−1 since the biggest difference from 0 is when
the sum is of t − 1 unique basis vectors with and hence when v has t − 1 1’s. This then
implies that ∆(C) ≤ ∆(v,0) ≤ t− 1, so we cannot have ∆(C) = t. Then by Theorem 4.3.,
C cannot be used to detect at most t− 1 errors. Thus we cannot have that v is nonzero and
a codeword. It must be the 0 codeword or no codeword.

This ensures that we may detect up to t − 1 errors using C. This is because if y is a
codeword that experiences at most t−1 errors, then the received message is z = y+bad stuff.
However, ”bad stuff” is some sum of t− 1 standard basis vectors that is nonzero and hence
not a codeword, meaning the received message cannot be a codeword per the rules of vector
spaces. This will tell the receiver that there is an error. We need to ensure that the incorrectly
received z is not a codeword, for if it was, then the receiver could trace it back to a valid
message that is different from the correct one.

Recalling our investigation with correcting a single error using G, we have the condition
that Gx+ ei + ej being a codeword means that ei + ej = 0. For the multiple error case, we
have a similar condition by making use of ∆(C) = t.

Proposition 4.5. Let C be a linear-[n, k] code that is error-correcting. To correct at most
t−1
2

errors, we require that a sum of at most t − 1 standard basis vectors can only be the
0-codeword, and no other codeword.

Proof. Note that if t− 1 standard basis vectors cannot sum to a nonzero-codeword, then we
can detect up to t−1 errors or that ∆(C) = t. This immediately shows that up to t−1

2
errors

can be corrected by Theorem 4.3. and thus our proof is complete.

Thus, in summary, we have:

Theorem 4.6. Let C be a linear-[n, k] code with Generator Matrix G. Then C can detect
at most t− 1 errors and correct at most t−1

2
of them if:

Any nonzero sum, v, of at most t− 1 standard basis vectors in C is such that
v /∈ range(G) = C.

9

Now that we’ve covered multiple errors, we are complete with basic ideas of how to
make code error-correcting. Note that to make code error-correcting, we need a detection
algorithm and a correction algorithm which is just an algorithm to locate the error: e.g.
Condition 3.6. and Condition 3.7..

5 Check Matrix H: Streamlining G

Recall that G can be constructed to satisfy conditions of Theorem 3.9. in order to make an
error-correcting linear code C.

For an error-correcting code C, we have to check if a received message z is a codeword
or not, which is not always so simple for large code C. The first step in streamlining this
step is to construct a matrix H that is such that Hz = 0 only when z ∈ range(G) = C.

Definition 5.1 (Check Matrix). Let C be a linear-[n, k] code. The (n−k)×n check matrix
H is given by:

H =
(
A In−k

)
where A is the (n− k)× k matrix in the systematic Generator Matrix G =

(
Ik AT

)T
of C.

H is called C’s Check Matrix.

Proposition 5.2. With notation as above, Hz = 0 if and only if z ∈ range(G) = C.

Proof. Suppose that z ∈ range(G) = C. Then there exists x ∈ Fk
2 such that Gx = z. We

have that:

HG =
(
A In−k

)(Ik
A

)
= AIk + In−kA = A+ A = 0

which means that Hz = HGx = 0(x) = 0.
Suppose that z ∈ Fn

2 and that Hz = 0. Then we have:

Az1 + z2 = 0

where z1 is the first k elements of z and z2 is the last n − k elements of z. Since we are
working in F2, we have that Az1 = z2. Thus we can write:

z =

(
z1
Az1

)
=

(
Ik
A

)
z1 = Gz1

which shows that z ∈ range(G) = C.

Example. Let us go back to our matrix

G =

1 0 0
0 1 0
0 0 1
1 1 1

for the linear-[4, 3] code C = span(e1 + e4, e2 + e4, e3 + e4). It’s check matrix is:

H =
(
1 1 1 1

)
10

which gives:

H

(
3∑

i=1

ai(ei + e4)

)
= a1 + a1 + a2 + a2 + a3 + a3 = 0.

Furthermore,
H(c1, c2, c3, c4) = c1 + c2 + c3 + c4 = 0

will imply that c is a linear combination of G’s columns after performing some algebra and
computation.

Now that we have this important property of H from Prop 5.2., we can return to inves-
tigations of single-bit errors once more. If y = Gx is a codeword but receives the error and
becomes y + ei, we get:

H(y + ei) = 0 +Hei

which is the ith column of H. This streamlines checking the second condition in Theorem
3.9., as rather than trying to add all the different ej and checking if Gx+ ei + ej = Gx, we
can simply look at columns of H until we find a match. Both seem like they are not efficient,
but remember that in practical applications, we would know H and its columns explicitly,
while we would need some computation to figure out which ej is such that Gx+ei+ej = Gx.

However, if H has two same columns, then we run into a problem, as we won’t be sure
which one of the multiple possible errors really happened. Thus we need to make sure H
has different columns. In general, we have:

Theorem 5.3. Let C be a linear-[n, k] code, and H it’s Check Matrix. Then C is error-
correcting if and only if the following are satisfied:

1. H has all nonzero columns.

2. No two columns of H are the same.

3. G is injective

Proof. Suppose that C is error-correcting. Then by Theorem 3.9., the Generator Matrix G
is such that Gx+ ei + ej ∈ range(G) = C =⇒ ei = ej and that ei /∈ range(G) = C for all
possible i. Note that:

H(Gx+ ei + ej) = Hei +Hej = 0

means column i and j of H are the same. However, since C is error-correcting, we must
have i = j and thus we cannot have that two different columns are the same. Additionally,

Hei ̸= 0

since ei /∈ range(G) = C, so H has all nonzero columns.
Suppose that H satisfies the given properties. Having all nonzero columns means that

Hei ̸= 0 for all ei, so ei /∈ range(G) = C. This means C satisfies Condition 3.6.. Further-
more, the second property of H implies that for i ̸= j, we get:

H(ei + ej) = Hei +Hej ̸= 0

11

since different columns must not be the same, and since the additive inverse of an element
in F2 is the element itself. This means that ei+ej is never a codeword unless i = j. In other
words, if Gx+ei+ej ∈ range(G) = C, then we must have ei = ej, i.e. Condition 3.7.. Thus
the two conditions on H along with G’s injectivity match the three conditions on G for C
to be error-correcting, which completes the proof.

Up to now, we’ve been constructing H by using G. This can also be done backwards. If
we have H but wish to find a corresponding G, rather than using Definition 5.1., we can also
just look at null(H) and find a basis. Doing so will yield the columns of G. The problem
with this method is that our basis may not lead to G being in systematic form while working
backwards by using Definition 5.1. will ensure G is in systematic form.

Note that the way we use H is very nice for computation since it’s like the systematic
form. What if H was in a different form other than

(
A I

)
? Luckily, row operations will

not change H’s code C:

Proposition 5.4. Elementary row operations on H will not change it’s corresponding code
C.

Proof. This comes easily from the fact that row operations preserve the nullspace and hence
the code C that is sent to zero by H. This is because if E is an elementary row operation
and A is a matrix, we have:

0 = Ax = IAx = (E−1E)Ax = E−1EAx.

By invertibility of row operations, they are injective and surjective so we must have that
EAx = 0. This is because EAx ∈ null(E−1) by above, and since injectivity implies
dim(null(E−1) = 0, the only null-element must be 0. EAx = 0 implies that the nullspace is
unchanged since this is only true when x ∈ null(A).

Since row operations can be done on H to get another H ′ for the same code C, we can
put messy forms of H into the form presented in Definition 5.1.. When constructing G from
a messy H, we can avoid this row operating step and just consider a basis for null(H), which
is in some sense simpler than cleaning H up and finding G via Definition 5.1..

6 Hamming Code

Lastly, let us investigate Hamming Code. This is a special, explicit example of error-
correcting linear code. The most popular Hamming Code is the [7, 4]-Hamming Code. The
Generator Matrix for this code is given by:

G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1

.

12

We may think of the corresponding code as being the original message along with three
parity checks. More specifically, if we send x = (x1, x2, x3, x4), the codeword is (x, x1 + x2 +
x4, x1 + x3 + x4, x2 + x3 + x4). Let’s look at the parity checks in particular. We have:

x1 + x2 + 0 + x4 = c5

x1 + 0 + x3 + x4 = c6

0 + x2 + x3 + x4 = c7

and xi = ci for i = 1, 2, 3, 4. When the recipient gets a message, they just have to check that
c5+ c1+ c2+ c4 = 0, and that c6+ c1+ c3+ c4 = 0, and that c7+ c2+ c3+ c4 = 0. Let’s check
that C is really error-correcting by going through Theorem 3.9. on G. Checking that ei is
not in the range of G can be tedious, so let us use H and Theorem 5.3. instead. We have:

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

which has no same columns and no nonzero columns. All that remains is to check that G is
injective. We can do this with a nice fact about linear transformations.

Proposition 6.1. If T : V → W is a linear transformation, it is injective if and only if
Tv = 0 if and only if v = 0; i.e. T is injective when it’s nullspace is zero-dimensional.

Proof. Suppose that T is injective. Then Tu = Tv implies that v = u. Thus, if Tv = 0,
since T0 = 0, we have v = 0.

Suppose that dimnull(T) = 0. Consider the case when Tu = Tv. Then T (u − v) =
Tu − Tv = 0 by linearity, so we have u − v ∈ null(T) = {0}, meaning v = u, so T is
injective.

Note that G is a linear transformation (all matrices are) and that G0 = 0. Thus all
conditions in Theorem 5.3. are satisfied, making the [7, 4]-Hamming Code an error-correcting
linear code. This code is particularly nice due to the ratio 4

7
. For a [n, k] code, the efficiency

of the code can be interpreted as k
n
. This efficiency tells us how much percent of the codeword

is the message we’re trying to send. When we use the encoding function e(x) = (x, x, x), we
have an efficiency of 1

3
which is terrible for large messages. However, 4

7
> 1

2
, so it is quite

efficient since more than half the codeword is something important.
An extension of the [7, 4]-Hamming Code is the [15, 11]-Hamming Code and generally

the [2n− 1, 2n−n− 1]. This type of code is nice because the efficiency tends to 100 percent:

lim
n→∞

2n − n− 1

2n − 1
= 1.

Naturally, if we have an infinitely long message and codeword, we can be a completely
efficient method of data transmission. Unfortunately, no computer right now can possibly
hold that much data.

13

References

[1] Jauregui, Jeff. Error–correcting codes with linear algebra. August 24, 2012.

[2] Fenyes, Aaron. Matrix Algebra and Error-Correcting Codes. University of Texas, October
2015.

[3] Venkatesan, Guruswami. Introduction to coding theory. Carnegie Mellon University,
Spring 2010. http://www.cs.cmu.edu/˜venkatg/teaching/ codingtheory/

14

