
FAST MATRIX MULTIPLICATION

JOSHUA KOO

Abstract. In this article, we introduce a couple N ×N matrix multiplication algorithms
that run in a faster time complexity than the commonly known time complexity of O(N3) as
well as give a broad overview of a few other mathematical concepts fast matrix multiplication
can be applied to.

1. Introduction

Matrices have always been both an important and useful tool in mathematics. Represent-
ing linear maps, they provide explicit computations in the field of linear algebra. They can
also be applied to graph theory, geometry, ring theory, and many other areas of mathematics.
In linear algebra, one of the first things students learn when understanding the fundamentals
of matrices are matrix multiplication, known as the binary operation that takes two matrices
and produces another matrix as an output, equivalent to the composition of linear maps.
First described by the French mathematician Jacques Philippe Marie Binet in 1812, the
common convention to multiply two matrices functions as the following: Given an M × N
matrix A and an N × P matrix B,

A =

A11 . . . A1N
...

AM1 . . . AMN

 , B =

B11 . . . B1P
...

BN1 . . . BNP

 ,

then the product C = AB is equivalent to the following:

C =

 A11B11 + · · ·+ A1NAN1 . . . A11B1P + · · ·+ A1NBNP
...

AM1B11 + · · ·+ AMNAN1 . . . AM1B1P + · · ·+ AMNBNP

 .

Namely,

Cij =
n∑

k=1

AikBkj.

Note that in this paper, we will only observe the multiplication of N × N matrices, mean-
ing M = N and P = N above. For convenience, let us now look at the pseudocode for
multiplying two N ×N matrices:

function Matrix_Multi(Matrix A, Matrix B) {

Matrix C = C[N][N] #initialized to 0

for (i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (int k = 0; k < n; k++) {

C[i][j] = C[i][j] + A[i][k] * B[k][j]
1



}

}

}

return C

}

From the pseudocode, we can see that the time complexity of the matrix multiplication
function is O(N3), by the 3 nested for loops. For those who do not know how time complexity
is defined, here is a definition proposed by Michael Sipser:

“Let M be a deterministic Turing machine [an algorithm] that halts on all inputs. The
running time or time complexity of M is the function f : N → N, where f(n) is the

maximum number of steps that M uses on any input of length n. If f(n) is the running
time of M , we say that M runs in time f(n) and that M is an f(n) time Turing machine.

Customarily we use n to represent the length of the input.”

So why is this important? Faster time complexity can optimize programs and make com-
puters more efficient, as well as influence real-world applications. Since introduced, it has
always been believed that O(N3) is the fastest time complexity and that there’s no other
faster algorithm. However, this was proven false in 1969, when Volker Strassen, a German
mathematician, published a faster algorithm proving that O(N3) is not optimal. Since then,
mathematicians have continuously tried to find a faster algorithm. Proved by Duan, Wu,
and Zhou, the fastest existing algorithm currently has a time complexity of O(N2.37188). Here
is an image of the history of time complexities for matrix multiplication:

2. Strassen Algorithm

Strassen’s algorithm states that there is an algorithm faster thanO(N3), namelyO(N log2 7).

Proof. Let AB = C. Strassen’s algorithm begins by partitioning A,B, and C into equally
sized matrices like the following:

2



A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

In the standard O(N3) algorithm, 8 multiplications would need to be required. However,
Strassen defines new matrices to reduce the required number of multiplications to 7, as shown
below:

M1 = (A11 + A22)(B11 +B22)

M2 = (A21 + A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 +B21)

M7 = (A12 − A22)(B21 +B22)

We can then represent C like the following:

C =

(
C11 C12

C21 C22

)
=

(
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

)
.

□

Note that the time complexity is O(N log2 7) because we can recursively partition the N×N
matrix into four blocks log2N times as each Mi has at most one degree of multiplication and
are independent of each other. There are of course several limitations. Here is a statement
by instructor Reza Zadeh from Stanford University:

“Our PRAM model [namely Strassen’s algorithm] assumes zero communication costs
between processors. The reason is because the PRAM model assumes a shared memory
model, in which each processor has fast access to a single memory bank. Realistically, we
never have efficient communication, since often times in the real world we have clusters of
computers, each with its own private bank of memory. In these cases, divide and conquer is
often impractical. It is true that when our data are split across multiple machines, having
an algorithm operate on blocks of data at a time can be useful. However, as Strassen’s
algorithm continues to chop up matrices into smaller and smaller chunks, this places a
large communication burden on distributed set ups because after the first iteration, it is
likely that we will incur a shuffle cost as we are forced to send data between machines.”

3. Pan

Although slower than Strassen’s, Victor Pan, an American mathematician and computer
scientist, and a few others used Strassen’s idea to simultaneously compute two products of
matrices. Instead of 2× 2 matrices, let us partition matrices into 13× 13 blocks.

3



Proof. Let A,B,C,A′, B′, C ′ be partitioned into 13×13 blocks. C = AB and C ′ = A′B′ can
then both simultaneously be calculated as the following. First, let

eikj = (Aik + A′
kj)(Bkj +B′ji)

fkj = A′
kjBkj

gij =

(
13∑
k=1

(Aik + A′
kj)

)
B′

ji

hki = Aik

(
13∑
j=1

(Bkj +B′
ji)

)
.

Then, we can find C and C ′ like the following:

Cij =
13∑
k=1

(eikj − fkj)− gij

C ′
ki =

13∑
j=1

(eikj − fkj)− hki.

Note that calculating two products of 13 × 13 matrices by the standard algorithm with
time complexity O(N3) is equivalent to 133 ∗ 2 = 4394 multiplications. However, with this
algorithm, the number of multiplications necessary is only 132 + 3 ∗ 132 = 2704. Similar to
Strassen’s algorithm, by continuously dividing each matrix into submatrices of 13×13 blocks

and recursively applying the formula above, we achieve a time complexity of O
(
nlog13

2704
2

)
=

O (n2.811) . □

4. Approximation

Just like how sometimes probabilistic algorithms are faster, could approximating the prod-
uct of matrices lead to a faster time complexity? The answer is yes. Let us first look at the
following definition.

Definition 4.1 (Bilinear Operator). An operator * is a bilinear operator if it satisfies the
following conditions:

• (A+ A′) ∗B = A ∗B + A′ ∗B
• A ∗ (B +B′) = A ∗B + A ∗B′

• cA ∗B = A ∗ cB = c(A ∗B)

for all A,B,A′, B′, and some constant c.

Instead of 2× 2 and 13× 13 matrices, let us look at 3× 3 matrices. Given 3× 3 matrices
A and B, we can approximate the product C using 21 multiplications. To do so, first, let

4



eij =
(
ϵ2Ai1 + Aj3

)
(B1j + ϵB3i)

fij =
(
ϵ2Ai2 + Aj3

)
(B2j − ϵB3i)

gj = Aj3 (B1j +B2j)

eii =
(
ϵ2Ai1 + Ai3

)
B1i

fii =
(
ϵ2Ai2 + Ai3

) (
B2i + ϵ2B3i

)
.

Note that here, ϵ is an infinitesimal number. We then find that Cij = 1
ϵ2
(eij + fij − gj) +

1
ϵ
(eij − eii). Like the previous two algorithms, we can recursively divide the matrix into 9

submatrices and apply the formulas above. Let * denote the approximated product using
the method above. Then, * is a bilinear operator. Thus, for our original O(N3) algorithm
we can replace each multiplication with *, and since Cij =

∑3
k=1(Aik ∗ Bkj) (mod ϵ), we

have C = AB = A ∗B (mod ϵ), as desired.

5. Faster Algorithms and Schur’s Complement

How have mathematicians found a faster algorithm from here? To understand how we
would need to understand the Coppersmith-Winograd algorithm and the laser method. We
would also have to understand how high tensor powers work. Note that faster multiplication
methods can also be applied to other properties of matrices, such as finding their inverse.
Similar to Strassen’s, it has been found that(

A B
C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1.

)
Like Strassen’s, we can recursively find the inverse of the Schur’s Complement, namely
D − CA−1B, and use fast matrix multiplication to successfully find the inverse.

References

[1] ”Matrix Multiplication: Strassen’s Algorithm.” Stanford University, http://stanford.edu/rezab/dao/
[2] Sipser, Michael. Introduction to the Theory of Computation. 3rd ed. Boston, MA: Thomson Course

Technology, 2013.
[3] Chan, Timothy. ”Notes on Fast Matrix Multiplication” The Grainger College of Engineering, Illinois,

2020.
[4] ”Fast Matrix Multiplication: Limitations of the Laser Method.” University of Latvia,

http://www.cs.toronto.edu/yuvalf/AmbFilLeG14.pdf.

5


	1. Introduction
	2. Strassen Algorithm
	3. Pan
	4. Approximation
	5. Faster Algorithms and Schur's Complement
	References

