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Abstract. We will first introduce some of the classical linear programming problems, and
then go over definitions and properties that are important such as duality. These problems
focus mainly on optimization and we will go over why linear programming algorithms will
be more efficient than other algorithms. Then we will introduce algorithms and utilize them
to solve the problems we introduced. We finally end with comparing the efficiencies of each
algorithm and the pros and cons.

1. Introducing the Problem

A linear program consists of a set of constraints on n variables and an objective function
which needs to be optimized.

Definition 1.1 (a standard linear program). maximize c1x1 + c2x2 + · · ·+ cnxn subject to:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, · · · , xn ≥ 0

Notation. The standard LP can be written compactly in terms of vectors and matrices.
We will use the same notation throughout.

max cTx

Ax ≤ b

x ≥ 0

Definition 1.2 (integer program). An integer program is a linear program where we look
for integral solutions.

We are often looking for integral solutions, and thus defining an integer program is the
next natural thing to do. It can be shown that an integer program has no deterministic
polynomial time algorithm (consider the example below). However, we can use a linear
program to get decent approximations (by using various rounding methods) for the same.
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1.1. Some History. Such a setup was often used to solve optimization problems like trans-
porting goods, scheduling, etc in the World War II. A prelimanry observation is that a
linear program can be solved by using brute force in O(nm) time - which is clearly not
good. The first feasible algorithm for this was devised by George B. Dantzig in the 1940s,
known as the Simplex Algorithm. As we see in this paper, this method simplified the prob-
lem a lot. However, the runtime of the algorithm is exponential in the cases when the
numer of variables/constraints is huge. Leonid Khachiyan, in 1979 gave a method called the
Ellipsoid Method which runs in polynomial time in the number of variables. However, it
appears to be doing worse in implementation that the Simplex Method. In 1984, Narendra
Karmakar discovered yet another polynomial time algorithm (also mentioned later in this
paper) which was at par with the Simplex Method (knows as the Interior Point Method).

1.2. Examples. Before we get into the algorithms, let us look at some problems in theoreti-
cal computer science which may not seem to be in the above form, but can be approximately
(and sometimes efficiently) reduced to a Linear Program.

Example (Vertex Cover). This NP-complete problem takes a graph G = (V,E) with vertex
i having weight wi as input (can be thought of as unweighted by setting every vertex to
weight 1) and must return a set S ⊆ V such that for all edges e = (u, v) ∈ E, at least one
of u and v belongs to S and

∑
i:vi∈S wi is minimized.

A corresponding Integer Program can be formulated as follows: let xi be a variable cor-
responding to vertex i. We let it be between 0 and 1. Note that since this is an Integer
Program, xi is either 0 or 1. It being 0 corresponds to the vertex not belonging to the cover,
and we include the vertex if the value is 1. Further, the constraint of every edge being
covered can be written as follows:

xu + xv ≥ 1 ∀(u, v) ∈ E.

Similarly, the objective function that we want to minimize is

|V |−n∑
i=1

wixi

It can be shown that rounding of the optimal solution obtained by solving this as a linear
program (instead of integer) obtains a 2 factor approximation. This also tells us that if there
exists a polynomial time algorithm for optimally solving integer programs, then the vertex
cover is in P. i.e. P = NP.

2. Theory of Duality

For every linear program there is a dual counterpart.

Definition 2.1. For c and x are n vectors and b and y are m vectors, and A is an m × n
matrix, the dual of a standard maximum problem

maximize cTx such that

Ax ≤ b

x ≥ 0
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is the standard minimum problem

minimize yTx such that

yTA ≥ cT

y ≥ 0

We transfer a standard minimum problem to a standard maximum problem by multiply-
ing A, b, c by -1. We can transform the standard maximum problem similarly back to a
standard minimum problem by multiplying by -1. We can see this in this example

Example. Maximize x1 + x2 for x1 ≥ 0, x2 ≥ 0 with constraints:

x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

−x1 + x2 ≤ 1

This corresponds to the standard minimum problem
Minimize 4y1 + 12y2 + y3 for y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 with constraints:

y1 + 4y2 − y3 ≥ 1

2y1 + 2y2 + y3 ≥ 1

Knowing how to transform one form to the another we will now look at two duality
theorems.

Theorem 2.2. Weak Duality Theorem If the first linear program is in maximization
form and the second is in minimization standard form and the two are dual of each other,
then,

• If the first linear program is is unbounded, then the second is infeasible;

• If the second is unbounded, then the first is infeasible;

• If the first and second linear programs are both feasible and bounded then (with opt
representing optimized value)

opt(LP1) ≤ opt(LP2)

Theorem 2.3. Strong Duality Theorem If either first or second is feasible and bounded,
then so is the other, and

opt(LP1) = opt(LP2),

then,
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• If one of first or second is feasible and bounded, then so is its counterpart;

• If one of first or second is unbounded, then the counterpart is infeasible;

• If one of first or second is infeasible, then the counterpart cannot be feasible and
bounded, that is, the other is going to be either infeasible or unbounded. Either case
can happen.

3. Pivot Operation

Before we introduce one of the main algorithms of linear algebra, we will go over a pre-
requisite that will allow us to understand the Simplex Method. For any system of equations
where we wish to maximize an objective function, there are dependent variables and inde-
pendent variables. Given a system of n linear functions and m unknowns, we can represent
it in matrix form as

yTA = sT

where yT = (y1, ..., ym) and sT = (s1, ..., sn) and A is matrix such that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn


What the pivot operation allows us to do is have a independent variable like yi and dependent
variable sj be interchanged. The conditions for this is that aij ̸= 0. This is because to we
derive an equation for yi by taking the jth equation such that

yi =
1

aij
(−y1aij − · · · − yi−1a(i−1)j + sj − yi+1a(i+1)j − · · · − ymamj)

. Substituting this into the other equations of the system of equations, we arrive to a new
system of equations where yi and sj have been switched.

y1â11 + · · · + sj âi1 + · · · + ymâm1 = s1
...

...
...

y1â1j + · · · + sj âij + · · · + ymâmj = yi
...

...
...

y1â1n + · · · + sj âin + · · · + ymâmn = sn

The relation between aij’s and the âij is shown below for reference, but not discussed in
detail as the main focus is to grasp an understanding of what the pivot operation does so
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we can understand what the Simplex Method does:

âij =
1

aij

âhj = −ahj
aij

for h ̸= i

âik =
aik
aij

for k ̸= j

âhk = ahk −
aikahj
aij

for k ̸= j and h ̸= i

In short, the pivoting quantity goes to its reciprocal, the entries in the same row are
divided by the pivot, the entries in the same column change sign and are divided by the
pivot, and the other entries are reduced by a product of the entries that correspond to their
row and column divided by the pivot point.

Without the Simplex Method, our only way to maximize/minimize an objective function
using pivot operations is to pivot ”madly” until all entries in the last column and last row are
nonnegative - an indication that we have maximized/minimized our desired objective function.

4. The Simplex Method

Created by George Bernard Dantzig, an American mathematical scientist, the simplex
method is an incredibly prominent algorithm in linear programming. While its name comes
from the concept of a simplex, the actual algorithm involves none. For the simplex method,
we will introduce two types of variables slack variables and decision variables. Slack
variables take on the value of our main constraints. Decision variables on the other hand are
the original variables in the original canonical linear programming problem. With our slack
and decision variables defined, we can then restate the problem from a linear programming
problem to optimizing, whether that be maximizing or minimizing, the original objective
subject to the slack and decision variables. The main idea behind solving problems with the
simplex method is improving successful iterations. Partnered with the theory of duality, one
can use the simplex method to solve minimization problems as well. We will first solve a
maximization problem using the simplex method to go over basic steps and terminology and
then break it down more systematically:

Example. Solving a Maximization Problem using Simplex Method

3x1 + 2x2 + 4x3

x1 + x2 + 2x3 ≤ 4

2x1 + 3x3 ≤ 5

2x1 + x2 + 3x3 ≤ 7

x1, x2, x3 ≥ 0

We define our slack variables by considering our constraints: since we have three con-
straints, we will have three slack variables. We define our slack variables using our decision
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variables x1, x2, x3. Let us define our first slack variable s1 = 4−x1−x2−2x3. This pattern
is repeated until we get the three following slack variables of our problem:

s1 = 4− x1 − x2 − 2x3

s2 = 5− 2x1 − 3x3

s3 = 7− 2x1 − x2 − 3x3

Then we define a variable z for the expression we wish to maximize. To maximize our
objective, we will have to maximize z, such that x1, x2, x3, s1, s2, s3 ≥ 0. Since the idea of
simplex method again is to improve with succession, we will first start by setting our decision
variables to 0 and through that evaluate our slack variables to be:

s1 = 4

s2 = 5

s3 − 7

which also gives us a z-value of 0. Let us try something different then, say we keep x2 and
x3 the same and solve for x1. We then get the inequality z = 3x1 > 0. Using the condition
that our slack variables must be positive we determine: since s1 ≥ 0, x1 ≤ 4, s2 ≥ 0 so
x1 ≤ 5

2
, and s3 ≥ 0 x1 ≤ 7

2
. This gives us a solution x1 ≤ frac52 since it fulfills all of these

inequalities. Now the current state of variables are:

x1 =
5

2
x2 = 0

x3 = 0

s1 =
3

2
s2 = 0

s3 =
9

2

z =
15

2

While z = 15
2

is much better z = 0, our solution be further improved by creating a new
system. We will now define x1 in terms of x2, x3, s1:

x1 = 4− x2 − 2x3 − s1
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and then substitute x1 to express our remaining variables in terms of x2, x3, s1:

s2 = 5− 2(4− x2 − 2x3 − s1)− 3x3

= −3 + 2x2 + x3 + 2s1

s3 = 7− 2(4− x2 − 2x3 − s1)− x2 − 3x3

= −1 + x2 + x3 + 2s1

z = 3(4− x2 − 2x3 − s1) + 2x2 + 4x3

= 12− x2 − 2x3 − 3s1

Now looking at our z equation, we observe that the coefficients of x2, x3, s1 which would
decrease our z value. So we have found our max z value which is 12, and our solution is:

x1 = 4, x2 = 0,

x3 = 0, s1 = 0,

s2 = −3, s3 = −1,

z = 12

4.1. The Simplex Method Systematically. The Simplex Method helps us to choose
pivots to approach the solution systematically. If we pivot for awhile and get the the tableau
where b ≥ 0

r
t A b

-c v

We reach a feasible point for a maximum problem when we let r = 0 and t = b. For a
minimum point, if -c ≥ 0, we have a feasible point when r = -c and t = 0. Our first case
is when we have already found a feasible point for the maximum problem b ≥ 0.
Case 1: b ≥ 0 Choose a column j0 that has a last entry negative column. For the row,

choose the one that has the smallest bi/ai,j0 ratio and if there are any ratios, choose any such
i0. This will be our new pivot point. When you can no longer pivot when b ≥ 0, there are
two possibilities. One, for all the columns the last column entry −cj ≥ 0, which means you
have found the solution - v being the value of your program. Two, your maximum problem
is unbounded feasible as you find that some last entry columns are less than 0 and that for
all ai,j0 ≤ 0 for all i. This rule works for selecting our pivot point because the b column
continues to be nonnegative, so we still have a feasible point and the new tableau is generally
greater than the old. Therefore, if we continue to use simplex method you will either find
the maximum or that the problem is unbounded feasible.

Case 2: Some bi are negative. In this case we find the first negative bi - bk and find
any negative entry in the row of k. We will then compare bk/ak,j0 and bi/ai,j0 which bi ≥ 0
and ai,j0 ≥ 0 and choose the i0 that gives the smallest ratio, and this would be the pivot
point. The only way the rules of case 2 do not apply is if we cannot find any negative entries
for the negative b values, and if this is the case, then the maximum problem is infeasible.
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5. The Ellipsoid Method

5.1. The Klee Minty Example. Even though the simplex algorithm does well in most of
the cases, it can do as bad as exponential in some. We consider the following instance of the
problem with n variables and n constraints.

max 2n−1xn−1 + 2n−2xn−2 + · · ·+ 2x1 + x0

xn−1 ≤ 5

4xn−1 + xn−2 ≤ 25

8xn−1 + 4xn−2 + xn−3 ≤ 125

...

2nxn−1 + 2n−1xn−2 + · · ·+ x0 ≤ 5n

xi ≥ 0 ∀i
The elementary simplex method goes through all the 2n extreme points before reaching the
optimal solution: (0, 0, · · · , 5n).

5.2. Reducing to a Promise LP. This algorithm solves an equivalent (as shown below)
problem known as a Promise Linear program in polynomial time. The idea is to consider
an ellipsoid which contains the set of feasible solutions and try to restrict the volume by
cutting it in half in a subsequent iteration.

Definition 5.1. An ellipsoid is the generalization of an ellipse to n dimensions. The set of
points (x1, x2, · · · , xn) forming an ellipsoid centered at the origin in n dimensions satisfy the
following equation:

n∑
i=1

x2
i

a2i
≤ 1

where the ai’s are the lengths of the semi-axes. An equivalent definition using matrices is as

follows. Let A =


1
a21

0 · · · 0

0 1
a22

· · · 0

...
... · · ·

...
0 0 · · · 1

a2n

. Then an ellipsoid can be given by the set of points

{(x1, x2, · · · , xn)|xAxT ≤ 1}.

Definition 5.2 (Bounded Linear Program). Is there a a vector x = [x1, x2, · · · , xn] such
that

Ax ≤ b,

xi ≥ 0,

xi ≤ c ∀i,
where A is a matrix, b a vector and c a natural number.

We briefly show the ideas behind the reduction from a Standard LP to a Promise LP by
showing that a standard one reduces to a bounded instance - which in turn, reduces to a
promise instance.

Theorem 5.3. A standard LP instance can be reduced to a promise LP instance.
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Proof. Consider a standard LP. We will remove the maximizing condition and add a bound
to convert it into a bounded LP. As in the notation defined at the beginning, denote by
M the maximum absolute value from all the integers in A,b, c. Instead of the maximising
condition, we add

(nk)n
2 ≤ cTx ≤ (nk)n

3

.

Further, the feasibility region can be bounded by

(nM)n
3

[1, 1, · · · , 1].
We run the polynomial time algorithm on this bounded instance. We now have two cases to
consider.
Case 1. There is such an x. It can be shown that this implies that the original standard LP
is unbounded and thus a maximum cannot be attained.
Case 2. There is no such x. Consider a new bounded LP instance created by removing the
maximizing condition from the standard LP and adding the constraint

x ≤ (nM)n
2

[1, 1, · · · , 1].
It can be shown that there is an optimal solution to the original standard LP if and only if
there is a solution to this newly created bounded LP. ■

Definition 5.4 (Promise Linear Program). With notation as in Definition 4.4, we ask the
following question: is there a vector x = [x1, · · · , xn] such that

Ax ≤ b,

xi ≥ 0, and

xi ≤ (nM)n
2 ∀i?

Theorem 5.5. A promise LP instance can be reduced to a bounded LP instance.

Proof. Consider an instance of the bounded LP problem with the constraint Ax ≥ b. It is
possible to slightly tweak this LP so that it is of the form

Ax ≥ b− εe, where e = [1, 1, · · · , 1].
There are two parts of the proof. We mention brief ideas for the same.
Part 1: showing that the new LP is an instance of a Promise LP.
We let x be a feasible solution to Ax ≥ b. Setting y such that

|yi − xi| ≤
ε

nM
∀i.

Upon some algebra (and choosing a satisfactory ε) this constraint ensures that Ay ≥ b−εe.
Further, because of the constraint, the set of all such y forms a cube of side ε/(nM). It can
be shown that this cube contains a sphere of radius 1

(nM)n3 . This shows that the new Linear

Program mentioned above is a Promise LP.
Part 2: showing that the new LP has a solution if and only if the original bounded one does.
It is easy to see that if x∗ is a solution to the bounded LP, then x∗ + εe is a solution to the
promise LP. The other way round is slightly tricky - and can be shown by proving the contra
positive. i.e. if the bounded LP has no solutions, so does the promise LP. The bounded LP
can be rewritten by adding an objective function: maximizing 0Tx with Ax ≥ b. Doing
some algebra can after assuming that the promise LP is feasible leads to a contradiction.
We do not mention the entire proof here. ■
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Let us now restate the problem we will be solving before getting to the algorithm.

Question 5.6. Given a matrix A and vector b with integer entries, is there a vector x
satisfying

Ax ≤ b, xi ≥ 0, xi ≤ (nM)n
2

where M is the maximum absolute value from all the integer entries in the given vec-
tors/matrices. Further, should the answer be yes, the feasible region contains a sphere of
radius 1

(nM)n3

5.3. Algorithm Idea. Our first observation is that each variable lies between 0 and (nM)n
2

- i.e. we can say that the feasible region lies entirely inside a sphere of radius (nM)n
3
centered

on around the origin. We set this as our Ellipsoid for this iteration. Now, if the center of
this Ellipsoid (the origin in this case) is feasible, then clearly we are done - we return it and
stop the algorithm. If it is not feasible, then there exists a constraint which was not satisfied
by it. We construct a half plane passing through the center so that the violated constraint
is now satisfied. We now have a restricted region containing the feasible points.

Theorem 5.7. Let E be an ellipsoid and P be a plane passing through the center of E which
cute the ellipsoid into two parts. There exists another ellipsoid which entirely contains the
points lying in the intersection of half plane (formed by P ) and E.

Let E ′ be the new ellipsoid obtained from this theorem. It can also be shown (we do
not go into much details here) that if the given LP is feasible, then the volume of the new
ellipsoid must lie above a threshold. More precisely, if the algorithm runs for more than
2(n + 1)n4ln(nM) iterations, the corresponding ellipsoid won’t contain a sphere of radius

1

(nM)n3 and hence the LP won’t be feasible.

The running time of this algorithm can be shown to be O(n6L), where n is the number of
variables and L is the number of bits to the input.

6. Comparing Efficiencies

Since the problem was introduced, there has been a lot of progress and a lot of variants of
the methods we saw above have come out. There are variants of the simplex method that
do well and are still used in practise. The Ellipsoid algorithm, being the first polynomial
time algorithm to solve the problem takes a huge amount of time (O(n6), as seen) on all
possible inputs and thus is not feasible in practise. Another huge breakthrough came out
in the 1980s - when mathematician Narendra Karmakar came up with the interior point
method. It combines the workings of the Simplex method and Ellipsoid algorithm to come
up with a O(n3) time way to solve the problem. It was observed to do as well as the simplex
method in practise and is also used in a lot of implimentations today.
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