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Alternating Sign Matrices

Alternating sign matrices appear when using Dodgson condensation to calculate a determinant.
Additionally, they are related to the six vertex model in statistical mechanics.

Definition. An alternating sign matrix is an n× n matrix with entries of 0, 1, or −1 such that

• the sum of a row or column is equal to 1,

• the nonzero entries of the rows and columns alternate signs.

For example, 
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1


is a 4× 4 alternating sign matrix.

Descending Plane Partitions

Definition. A descending plane partition is a plane partition with

• rows that do not increase from left to right,

• columns that decrease downwards,

• a number of entries in each row strictly less than the largest entry in the row,

• indented left side edges.

Notably, there are
n−1∏
j=0

(3j + 1)!

(n+ j)!

descending plane partitions of order n.
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Alternating Sign Matrix Theorem

Theorem 1. The number of n× n alternating sign matrices is given by

n−1∏
j=0

(3j + 1)!

(n+ j)!
.

Theorem 2. The number of n×n alternating sign matrices with a unique 1 in the first row in the
ith column is given by (

n+ i− 2
n− 1

)(
2n− i− 1

n− 1

)
(
3n− 2
n− 1

) n−1∏
j=0

(3j + 1)!

(n+ j)!
.

Definition. A monotone triangle of order n is a triangle with n entries along the sides and base
with the entries between 1 and n such that

• entries strictly increase from left to right across rows,

• entries increase diagonally towards right.

Let the ith row of the triangle equal the positions of 1s in the sum of the first i rows of an
alternating sign matrix.

Example

For example, 1 0 0
0 0 1
0 1 0

 .

Then,
r1 = (1, 0, 0) = 1

r1 + r2 = (1, 0, 0) + (0, 0, 1) = 1, 3

r1 + r2 + r3 = (1, 0, 0) + (0, 0, 1) + (0, 1, 0) = 1, 2, 3.

With that, 1 0 0
0 0 1
0 1 0


←→

1

1 3

1 2 3.
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Definition. The shift operator Ex is

Exp(x) = p(x+ 1)

and
Sx,y = Ex + E−1

y − ExE
−1
y .

Additionally, the forward difference and backward difference are

∆x = Ex − Id

and
∆x = Id− E−1

x

respectively.

Additionally, let

GTn(x) =
∏

1≤i<j≤n

xi − xj + j − i

j − i
,

Mn(x) =
∏

1≤p<q≤n

Sxq,xp
GTn(x),

and
MTλ =

∑
µ≺λ
µS

MTµ = The number of monotone triangles with bottom row λ.

Theorem 3. Let n ≥ 2. Suppose P (x), Q(x) are polynomials in x = (x1, ..., xn−1) with P (x) =
∆xQ(x). Furthermore, suppose if xi+1 = xi + 1, then for every i = 1, 2, ..., n − 2 Sxi,xi+1

Q(x)
vanishes. If λ is a partition with n parts, then

∑
µ≺λ

µstrict

P (µ) =

n∑
r=1

(−1)r+nQ(λ1 + 1, ..., λr−1 + 1, λr+1, .., λn).

Theorem 4. Let d1, d2, .., dn−1 ≥ 0 be integers with dn = −1. If λ is a partition with n parts,
then ∑

µ≺λ
µstrict

∏
1≤p<q≤n−1

Sµq,µp
det1≤i,j≤n−1

(
µi − i+ n− 1

dj

)

=
∏

1≤p<q≤n

Sλ1,λp
det1≤p,q≤n

(
λi − i+ n
dj + 1

)
.

Theorem 5. Let λ = (λ1, ..., λn) be a strict partition, then the number of monotone triangles with
bottom row λ is Mn(x) at (x1, ..., xn) = (λ1, ..., λn).

This follows from 3 and 4.

Definition.
rot(λ) = (λn − n, λ1, ..., λn−1).
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Theorem 6. Let n ≥ 1 and 1 ≤ r ≤ n. Then,

er(∆x1 , ..,∆xn)
∏

1≤i<j≤n

xi − xj + j − i

j − i

= er(∆x1
, ..,∆xn

)
∏

1≤i<j≤n

xi − xj + j − i

j − i
= 0.

Proof. Considering

Ex1E
2
x2
...En

xn
er(∆x1 , ...,∆xn)

∏
1≤i<j≤n

xi − xj + j − i

j − i

= er(∆x1
, ...,∆xn

)
∏

1≤i<j≤n

xi − xj

j − i
,

it follows that the right-hand side vanishes.

Suppose λ is an integer vector of length n, then

MTλ = (−1)n−1MTrot(λ).

Theorem 7.

• (1) The number of monotone triangles with bottom row 1, 2, ..., n and i occurrences of 1 is
equal to the evaluation of the polynomial (−∆xn

)i−1Mn(x1, ..., xn)at(x1, ..., xn) = (n, n −
1, ..., 3, 2, 2).

• (2) The number of monotone triangles with bottom row 1, 2, ..., n and i occurrences of n is
equal to the evaluation of the polynomial ∆i−1

x1
Mn(x1, ..., xn)at(x1, ..., xn) = (n−1, n−1, n−

2, ..., 2, 1).

Theorem 8. Let n ≥ 1. Then,

An,i =

n∑
j=1

(
2n− i− 1

n− i− j + 1

)
(−1)j+1An,j , i = 1, 2, ..., n.

Proof. Using 7(1),

An,1 = (−1)n+i∆
i−1

xn
Mn(xn − n, n− 1, ..., 2)|xn=2,

which is equal to
(−1)n+i(Id−∆i−1

xn
Mn(xn, n− 1, n− 2, .., 1)|xn=n−1.

Then, using 7(2), ∑
j≥0

(
2n− i− 1

j

)
(−1)n+i+jAn,i+j

=

n∑
j=1

(
2n− i− 1

j − i

)
(−1)n+jAn,j

where An, j = 0 when j > n.
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