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Alternating Sign Matrices

Alternating sign matrices appear when using Dodgson condensation to calculate a determinant.
Additionally, they are related to the six vertex model in statistical mechanics.

Definition. An alternating sign matrix is an n X n matrix with entries of 0,1, or —1 such that
e the sum of a row or column is equal to 1,
e the nonzero entries of the rows and columns alternate signs.

For example,

0 1 00
1 -1 1 0
0 1 0 0
0 0 01

is a 4 x 4 alternating sign matrix.

Descending Plane Partitions

Definition. A descending plane partition is a plane partition with
e rows that do not increase from left to right,
e columns that decrease downwards,
e a number of entries in each row strictly less than the largest entry in the row,
e indented left side edges.

Notably, there are
1:[1 (3j + 1)!
o (n+7)!

descending plane partitions of order n.



Alternating Sign Matrix Theorem

Theorem 1. The number of n X n alternating sign matrices is given by

T (35 +1)!
H 3

Theorem 2. The number of n x n alternating sign matrices with a unique 1 in the first row in the
ith column is given by
n+i—2\ (2n—i—1
( n—1 )( n—1 >H 35+ 1)

3n —2 =0 (n+7)!
n—1

Definition. A monotone triangle of order n is a triangle with n entries along the sides and base
with the entries between 1 and n such that

e entries strictly increase from left to right across rows,
e entries increase diagonally towards right.

Let the ¢th row of the triangle equal the positions of 1s in the sum of the first ¢ rows of an
alternating sign matrix.

Example
For example,
1 00
0 0 1
0 1 0
Then,
™= (17070) =
r1+7r2=(1,0,0)+(0,0,1) = 1,3
r +7r2+7r3=(1,0,0)+(0,0,1) + (0,1,0) =1, 2,3.
With that,
1 00
0 0 1
0 1 0
—
1
1 3
1 2 3



Definition. The shift operator E, is
Eqxp(z) = p(z +1)

and
Sey = Es + E;' —E,E;".

Additionally, the forward difference and backward difference are

A, =F,—1Id
and
A, =1Id—-E;"
respectively.
Additionally, let

Ti—T;+7J—1

GT.(x)= []

1<i<j<n J -t
Mn(x) = H qu,x,,GT7z(X)7
1<p<g<n
and
MT) = Z MT,, = The number of monotone triangles with bottom row A.
=X
usS

Theorem 3. Let n > 2. Suppose P(x),Q(x) are polynomials in x = (z1,...,z,—1) with P(x) =
AxQ(x). Furthermore, suppose if z;41 = x; + 1, then for every i = 1,2,...,n — 2 S;, 5, ., Q(x)
vanishes. If A is a partition with n parts, then

n

Z P(p) = Z(—1)’“+"Q(A1 + 1 A 4 L A M)

pH=A r=1
pstrict

Theorem 4. Let dy,ds,..,d,—1 > 0 be integers with d, = —1. If X\ is a partition with n parts,

then
i—t+n—1
> II  Swmdeticijzn (N Zd,n )
J

p=Xx 1<p<qg<n-—-1
pstrict

ANi—1+n
= Il S>\,>\de'51<,<<Z )
1< o =P dj +1

<p<g<n

Theorem 5. Let A = (A1, ..., \,) be a strict partition, then the number of monotone triangles with
bottom row A is My, (x) at (z1,...,2Zn) = (A1, ..y An).

This follows from 3 and 4.

Definition.
I'Ot(>\) = (An —n, Al, ceey >\7L—1)'



Theorem 6. Let n > 1 and 1 <r <n. Then,

I¢7Ij+j7i
=

1<i<j<n J

CCZ'—ZL'j-Fj—Z.
j—i

=er(Agy, - As,) =0.

1<i<j<n

Proof. Considering

En B2, Bl ey, A, [ Bt

1<i<j<n =
T — I
ZST(AQC]?"'?AJCn) H ;_Z’]7
1<i<j<n
it follows that the right-hand side vanishes. O

Suppose A is an integer vector of length n, then
MTy = (=1)"""MT,o000).

Theorem 7.

e (1) The number of monotone triangles with bottom row 1,2,...,n and 7 occurrences of 1 is

equal to the evaluation of the polynomial (—A,, ) "M, (z1,...,2zn)at(z1, ..., xn) = (n,n —
1,..,3,2,2).

e (2) The number of monotone triangles with bottom row 1,2,...,n and i occurrences of n is
equal to the evaluation of the polynomial é;:an(xl, e Tp)ab(xy, ey ) = (n—1,n—1,n—
2,..,2,1).

Theorem 8. Let n > 1. Then,
n )
Ani=Y ( 2n—i—1 ) (—1)/ T A, ,i=1,2,..,n.

. n—t1—j7+1
Jj=1

Proof. Using 7(1), ‘
Ay = ()" A My (2 —nyn — 1,0, 2) | 2o,

which is equal to , '
(_1)n+1(1d - é;;an(xna n— 17 n— 2a S 1)|En:n—1'

2n—1—1 i
Z( j )(—1>++1An,i+j

>0

" on—i—1 -
> )i,
=1

j J—r

Then, using 7(2),

where A,,,j =0 when j > n.



