Alternating Sign Matrices

Grace Howard

March 19, 2023

Alternating Sign Matrices

Alternating sign matrices appear when using Dodgson condensation to calculate a determinant. Additionally, they are related to the six vertex model in statistical mechanics.

Definition. An alternating sign matrix is an $n \times n$ matrix with entries of 0, 1, or -1 such that

- the sum of a row or column is equal to 1,
- the nonzero entries of the rows and columns alternate signs.

For example,

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

is a 4×4 alternating sign matrix.

Descending Plane Partitions

Definition. A descending plane partition is a plane partition with

- rows that do not increase from left to right,
- columns that decrease downwards,
- a number of entries in each row strictly less than the largest entry in the row,
- indented left side edges.

Notably, there are

$$\prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}$$

descending plane partitions of order n.

Alternating Sign Matrix Theorem

Theorem 1. The number of $n \times n$ alternating sign matrices is given by

$$\prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}.$$

Theorem 2. The number of $n \times n$ alternating sign matrices with a unique 1 in the first row in the *i*th column is given by

$$\frac{\binom{n+i-2}{n-1}\binom{2n-i-1}{n-1}}{\binom{3n-2}{n-1}}\prod_{j=0}^{n-1}\frac{(3j+1)!}{(n+j)!}.$$

Definition. A monotone triangle of order n is a triangle with n entries along the sides and base with the entries between 1 and n such that

- entries strictly increase from left to right across rows,
- entries increase diagonally towards right.

Let the *i*th row of the triangle equal the positions of 1s in the sum of the first i rows of an alternating sign matrix.

Example

For example,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Then,

$$r_1 = (1, 0, 0) = 1$$

$$r_1 + r_2 = (1, 0, 0) + (0, 0, 1) = 1, 3$$

$$r_1 + r_2 + r_3 = (1, 0, 0) + (0, 0, 1) + (0, 1, 0) = 1, 2, 3.$$

With that,

/1	0	0
$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	0	1
$\sqrt{0}$	1	0/

 \longleftrightarrow

1

Definition. The shift operator E_x is

$$E_x p(x) = p(x+1)$$

and

$$S_{x,y} = E_x + E_y^{-1} - E_x E_y^{-1}.$$

Additionally, the forward difference and backward difference are

$$\overline{\Delta_x} = E_x - Id$$

and

$$\underline{\Delta_x} = Id - E_x^{-1}$$

respectively.

Additionally, let

$$GT_n(\mathbf{x}) = \prod_{1 \le i < j \le n} \frac{x_i - x_j + j - i}{j - i},$$
$$M_n(\mathbf{x}) = \prod_{1 \le p < q \le n} S_{x_q, x_p} GT_n(\mathbf{x}),$$

and

$$MT_{\lambda} = \sum_{\substack{\mu \prec \lambda \\ \mu S}} MT_{\mu} = \text{ The number of monotone triangles with bottom row } \lambda.$$

Theorem 3. Let $n \ge 2$. Suppose $P(\mathbf{x}), Q(\mathbf{x})$ are polynomials in $\mathbf{x} = (x_1, ..., x_{n-1})$ with $P(\mathbf{x}) = \overline{\Delta_{\mathbf{x}}}Q(\mathbf{x})$. Furthermore, suppose if $x_{i+1} = x_i + 1$, then for every i = 1, 2, ..., n-2 $S_{x_i, x_{i+1}}Q(\mathbf{x})$ vanishes. If λ is a partition with n parts, then

$$\sum_{\substack{\mu \prec \lambda \\ \mu strict}} P(\mu) = \sum_{r=1}^{n} (-1)^{r+n} Q(\lambda_1 + 1, \dots, \lambda_{r-1} + 1, \lambda_{r+1}, \dots, \lambda_n).$$

Theorem 4. Let $d_1, d_2, ..., d_{n-1} \ge 0$ be integers with $d_n = -1$. If λ is a partition with n parts, then

$$\sum_{\substack{\mu \prec \lambda \\ \mu strict}} \prod_{1 \le p < q \le n-1} S_{\mu_q,\mu_p} \det_{1 \le i,j \le n-1} \binom{\mu_i - i + n - 1}{d_j} \\ = \prod_{1 \le p < q \le n} S_{\lambda_1,\lambda_p} \det_{1 \le p,q \le n} \binom{\lambda_i - i + n}{d_j + 1}.$$

Theorem 5. Let $\lambda = (\lambda_1, ..., \lambda_n)$ be a strict partition, then the number of monotone triangles with bottom row λ is $M_n(\mathbf{x})$ at $(x_1, ..., x_n) = (\lambda_1, ..., \lambda_n)$.

This follows from 3 and 4.

Definition.

$$rot(\lambda) = (\lambda_n - n, \lambda_1, ..., \lambda_{n-1}).$$

Theorem 6. Let $n \ge 1$ and $1 \le r \le n$. Then,

$$e_r(\overline{\Delta_{x_1}}, ..., \overline{\Delta_{x_n}}) \prod_{1 \le i < j \le n} \frac{x_i - x_j + j - i}{j - i}$$
$$= e_r(\underline{\Delta_{x_1}}, ..., \underline{\Delta_{x_n}}) \prod_{1 \le i < j \le n} \frac{x_i - x_j + j - i}{j - i} = 0$$

Proof. Considering

$$E_{x_1}E_{x_2}^2...E_{x_n}^n e_r(\overline{\Delta_{x_1}},...,\overline{\Delta_{x_n}}) \prod_{1 \le i < j \le n} \frac{x_i - x_j + j - i}{j - i}$$
$$= e_r(\overline{\Delta_{x_1}},...,\overline{\Delta_{x_n}}) \prod_{1 \le i < j \le n} \frac{x_i - x_j}{j - i},$$

it follows that the right-hand side vanishes.

Suppose λ is an integer vector of length n, then

$$MT_{\lambda} = (-1)^{n-1} MT_{\operatorname{rot}(\lambda)}.$$

Theorem 7.

- (1) The number of monotone triangles with bottom row 1, 2, ..., n and *i* occurrences of 1 is equal to the evaluation of the polynomial $(-\overline{\Delta}_{x_n})^{i-1}M_n(x_1, ..., x_n)\operatorname{at}(x_1, ..., x_n) = (n, n 1, ..., 3, 2, 2).$
- (2) The number of monotone triangles with bottom row 1, 2, ..., n and i occurrences of n is equal to the evaluation of the polynomial $\underline{\Delta}_{x_1}^{i-1} M_n(x_1, ..., x_n) \operatorname{at}(x_1, ..., x_n) = (n-1, n-1, n-2, ..., 2, 1).$

Theorem 8. Let $n \ge 1$. Then,

$$A_{n,i} = \sum_{j=1}^{n} {\binom{2n-i-1}{n-i-j+1} (-1)^{j+1} A_{n,j}, i = 1, 2, ..., n}.$$

Proof. Using 7(1),

$$A_{n,1} = (-1)^{n+i} \overline{\Delta}_{x_n}^{i-1} M_n(x_n - n, n-1, ..., 2)|_{x_n = 2},$$

which is equal to

$$(-1)^{n+i}(Id - \underline{\Delta}_{x_n}^{i-1}M_n(x_n, n-1, n-2, ..., 1)|_{x_n=n-1}.$$

Then, using 7(2),

$$\sum_{j\geq 0} \binom{2n-i-1}{j} (-1)^{n+i+j} A_{n,i+j}$$
$$= \sum_{j=1}^{n} \binom{2n-i-1}{j-i} (-1)^{n+j} A_{n,j}$$

where $A_n, j = 0$ when j > n.