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Abstract. In this paper, we prove that every circulant Hadamard matrix cannot have size
greater than 8, given that the size must be a power of 2. We first give a brief overview of
the study of Hadamard matrices. Next, we define circulant matrices, and proceed to give
a proof to our claim using algebraic number theory and Galois theory. Specifically, we first
prove a lemma that the every Hadamard matrix has size 1, 2, or a multiple of 4, and then

create a contradiction that 2k2
k−1

can be factorised using the eigenvalues of the circulant
Hadamard matrices.

1. Definitions

We first by the definition of a Hadamard martix.

Definition 1.1. An n× n matrix A is said to be Hadamard if it has orthogonal columns
and contains only 1s and −1s.

Note that when we consider orthogonality, we mean in a field of characteristic 0.
As an example: here is a 4× 4 Hadamard matrix:
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


The dot product of two distinct columns will always give zero in the above matrix, and is
hence Hadamard.
An analogous way of defining Hadamard matrices is by replacing the orthogonality condition
with the fact that ATA = nI, where I is the identity matrix. This second fomulation implies
that

detA = ±nn/2

I claim that every Hadamard matrix also has orthogonal rows. Let H ′ = n−1/2H if H is a
Hadamard matrix. Then H ′ has orthonormal columns, which means it’s in On and hence
has orthogonal rows. Hence H, which is a scalar multiple of H ′, also has orthogonal rows.
It is clear that a permutation of rows or columns of a Hadmard matrix is Hadamard. Also,
multiplying any row or column with −1 gives us a Hadamard matrix, as scalar multiplication
preserves orthogonality, and since | − 1| = 1, the norm is also preserved.

Definition 1.2. A Hadamard matrix is said to be normalized if it’s first row and column
consists of all +1s. From the previous paragraph, it is clear that a Hadamard matrix

We now prove a standard fact regarding the size of a Hadamard matrix:
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Theorem 1.3. If H is a Hadamard matrix of size n×n, then n = 1, 2 or 4k for some k ∈ N

Proof. We have
(
1
)
as a 1×1 Hadamard matrix, and

(
1 1
−1 1

)
as a 2×2 Hadamard matrix.

Now suppose n ≥ 3. Normalize H and rearrnage the second and third rows in the following
way:(
W X Y Z

)
,

where W is a 2× w matrix with all 1s, X is a 2× x matrix with first row all 1s and second
row all −1s, Y is a 2×y with first row all −1s and second row all 1s, and Z is a 2× z matrix
with all −1s.
We must have w + x + y + z = n, and taking the inner product of the rows 1 and 2, 1 and
3, and 2 and 3 gives: 

w + x− y − z = 0

w − x+ y − z = 0

w − x− y + z = 0

.

This system of four linear equations gives the unique solution w = x = y = z = n
4
, which

implies n is a multiple of 4. ■

The main problem in the study of Hadamard matrices is to prove the converse, that a
4k × 4k Hadamard matrix exists for every k.
We now define circulant matrices.

Definition 1.4. A matrix M is called circulant if there exists a0, . . . , an−1 with bij = ai−j

where the i− j is taken modulo n.

In simpler terms, every row is a cyclic right shift of the row above it.
For example, the following matrix is circulant (it is also Hadamard):
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

It is an open problem to show the following:

Conjecture 1.5. A circulant Hadamard matrix only exists for n = 1 and 4.

2. Proof of Main Result

In this paper, we prove that there doesn’t exists a circulant Hadamard matrix for all
powers of 2 except 1 and 4.
For n = 2, a circulant matrix must be of the form(
x y
y x

)
.

No combination of x and y being ±1 will give non-zero determinant, which obviously means
the columns cannot be orthogonal.

Let n = 2k with k ≥ 3, and ζ = e
2πi

2k . Then ζ is a root of the polynomial pk(x) = x2k−1
+ 1.

Let Z[ζ] be the smallest subring of C containing both Z and ζ. Also, let Q(ζ) equal the
quotient filed of Z[ζ].

Lemma 2.1. The polynomial pk(x) is irreducible over Q.
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Proof. Note that it is equivalent to prove this result of pk(x+1). We use Einstein’s criterion;
we have
pk(x+ 1) = (x+ 1)2

k−1
+ 1 = x2k−1

+ [
∑2k−1−1

i=1

(
2k−1

i

)
xi] + 2.

If we take p = 2, then all coefficients except the leading one are even, and the constant term
isn’t divisble by 22.
Hence the polynomial is irreducible. ■

From this lemma, it follows that every u ∈ Z[ζ] can be uniquely written as

u = b0 + b1ζ + b2ζ
2 + . . .+ bn

2
−1ζ

n
2
−1

For bi ∈ Z
We may write detH as:

(2.1)
n−1∏
j=0

(a0 + ζja1 + ζ2ja2 + . . .+ ζ(n−1)jan−1) = ±nn/2 = ±2k2
k−1

Note that ai = ±1 since H is Hadamard. So we have a factorisation of 2k2
k−1

in Z[ζ] with
the form above.
Denote the eigenvalues of H as

γj = a0 + ζja1 + ζ2ja2 + . . .+ ζ(n−1)jan−1

Lemma 2.2. We have |γj| =
√
n for every 0 ≤ j ≤ n− 1.

Proof. Recall H ′ = n−1/2H. This is a real orthogonal matrix, which means it has eigenvalues
with absolute value 1, which implies all eigenvalues of H have absolute value

√
n. ■

Lemma 2.3. 2 = (1− ζ)n/2u = (1− ζ)2
k−1

u, where u ∈ Z[ζ] is a unit.

Proof. We have xn/2 + 1 =
∏n−1

j=0|j=2k+1(x− ζj)

=⇒ 2 =
∏n−1

j=0|j=2k+1(1− ζj). If we show that

Since 1 − ζj = (1 − ζ)(1 + ζ + . . . + ζj−1), and we have n
2
such j, it suffices to show that

(1 + ζ + . . .+ ζj−1) is a unit when j is odd.
Let j̄ be the inverse of j modulo n.

We have (1 + ζ + . . .+ ζj−1)−2 = 1−ζ
1−ζj

= 1−(ζj)j̄

1−ζj

= (1 + ζj + ζ2j + . . .+ ζ(j̄−1)j ∈ Z[ζ], as desired. ■

Lemma 2.4. We must have Z[ζ]/(1− ζ) ∼= F2.

Proof. Let R = Z[ζ]/(1 − ζ). 2 is not a unit in Z[ζ] as 1
2
is not an algebraic integer. Thus,

by the previous lemma, 1− ζ cannot also be a unit, implying R ̸= 0.
Since ζ is identified with 1 in this quotient ring, we have ζj = 1 for all j, and R contains
ordinary integers. But since, 2 is not a unit, it must be that 2 = 0 in R, and that R = F2 ■

Lemma 2.5. For all 0 ≤ j ≤ n− 1, there exists a non-negative integer hj such that

γj = a0 + a1ζ
j + a2ζ

2j + . . .+ an−1ζ
(n−1)j = vj(1− ζ)hj

where vj is a unit in Z[ζ]
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Proof. By Lemma 2.3, 2 is a multiple of (1− ζ)k2
(k−1)

. By (3.1), we have

(2.2)
n−1∏
j=0

(a0 + a1ζ
j + a2ζ

2j + . . .+ an−1ζ
(n−1)j) = 0

in Z[ζ]/(1− ζ)2
k−1

. Since Z[ζ]/(1− ζ) ∼= F2 is an integral domain, there exists some j such
that a0 + a1ζ

j + a2ζ
2j + . . .+ an−1ζ

(n−1)j is divisible by 1− ζ. Divide the LHS of (2.2) and

the RHS of (2.1) (which is ±2k2
k−1

) by (1− ζ). We continue to do this until the RHS of (2.1)
reaches a unit. Then, each factor (or each eigenvalue of H) has the form v(1− ζ)h where v
is a unit. ■

Corollary 2.6. Either γ0
γ1

or γ1
γ0

is in Z[ζ]

Proof. By the previous lemma, we have γj = vj(1−ζ)hj for each j If h0 ≥ h1, the γ0/γ1 ∈ Z[ζ].
Else, γ1/γ0 ∈ Z[ζ]. ■

We know go on a detour in proving Kronecker’s theorem , a result in algebraic number
theory proved using Galois theory. We first start with the following lemma:

Lemma 2.7. If θ ∈ C is an algebraic number such that it and all of its conjugates have
absolute value 1, then θ is a root of unity.

Proof. Let θ = θ1, θ2, . . . , θd be the conjugates of θ. Let f1(x) = f(x) =
∏d

i=1(x− θi) be the
minimal polynomial for θ.
We now let fn =

∏d
i=1(x− θni ).

Every polynomial fn is an integral polynomial. This is because every elementary symmetric
polynomial in θni can be represented as an elementary symmetric polynomial in θi, which are
integral by definition.
fn’s roots also have absolute value 1. By Vieta’s formula, the number of integral polynomials
of degree d that have absolute value 1 roots is finite, and hence θn = σ(θm) for some natural
numbers m and n and for some Galois conjugation σ of fm. Let t be such that σt(θm) = θm,
then θn

t
= θm, or θn

t−m = 1 (n can be chosen large enough so that nt −m is guaranteed not
to equal 0). ■

Theorem 2.8 (Kronecker). If τ is a root of unity and α ∈ Z[τ ] with |α| = 1. Then α is a
root of unity.

Proof. Since α ∈ Z[τ ], we can conclude that α is an integer. Since the field extension Q(τ)/Q
is cyclomatic (due to τ being a root of unity), it implies that the Galois group of the field
extension G is abelian.
Let β be a conjugate of α, which means that there exists an automorphism w ∈ G such that
β = w(α). Since conjugation is an automorphism in G (as it fixes Q), it commutes with w.
Then since ᾱα = 1, we have
w(ᾱα) = w(1) = 1
=⇒ w(ᾱ)w(α) = 1
=⇒ w̄(α)w(α) = 1
=⇒ β̄β = 1.
This implies all conjugates of α have absolute value 1. By using the previous lemma, we
must have that α is a root of unity. ■
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Lemma 2.9. If τ ∈ Z[ζ] is a root of unity, then τ = ζr for some r ∈ Z.

Proof. Suppose not. Then τ must be a 2mth primitive root of unity for m > k, or τa is pth
root of unity, with p an odd prime and a ≥ 1. In the former case, we have that

[Q(τ) : Q] = ϕ(2m) = 2m−1 > 2k−1 = ϕ(2k) = [Q(ζ) : Q],

which is a contradiction as τ ∈ Z[γ]. For the latter case, τaζ being a primitive pnth root of
unity implies

[Q(τ) : Q] = ϕ(pn) = (p− 1)ϕ(n) > ϕ(n) = [Q(ζ) : Q],

which is again a contradiction. ■

We now complete the proof of our main result, that there doesn’t exist a circulant
Hadamard matrix of order 2k with k ≥ 3. By Lemma 2.2, we have

|γ0
γ1

| = |γ1
γ0

| = 1

. By Corollary 2.6, one of γ1/γ0 and γ0/γ1 is in Z[ζ]. This fact along with both of them having
absolute value 1 implies that one of them in a root of unity (using Kronecker’s theorem).
By Lemma 2.9, we get that γ0 = ζ−rγ1 for some integer r. Equating the unique expression
of γ0 and ζ−rγ1 we get

γ0 = a0 + a1 + . . . = ±
√
n

(since γ0 is real), and

ζ−rγ1 = ζ−r((a0 − an/2) + (a1 − an/2+1ζ + . . .) = (ar − an/2+r) + (ar+1 − an/2+r+1)ζ + . . .

(note that addition in the subscript is modulo n). Equating the constant coefficients, we get
that ar − an/2+r = ±

√
n. Since |aj| = 1 for all j, we must have n ≥ 4, which completes the

proof.
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