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1 Introduction

In this paper, we cover the relationship between rational generating functions, linear recur-
rences, and explicit formulas. We prove a theorem about this through vector spaces. We then
show some corollaries of the theorem.

We will assume knowledge of vector spaces, the Fundamental Theorem of Algebra, and the
Generalized Binomial Theorem.

2 Main Theorem on Equivalent Representations

Definition 2.1. A rational function over C is a function of the form P (x)/Q(x) where P and
Q are polynomials in x over C.

Example. The classic sequence which has a rational generating function is the Fibonacci num-
bers, defined by f0 = 0, f1 = 1, and the recurrence fn = fn−1 + fn−2. Let F (x) =

∑∞
n=0 fnx

n.
We have that (x+ x2)F (x) =

∑∞
n=2(fn−2 + fn−1)x

n =
∑∞

n=2 fnx
n = F (x)− x. Thus, (1− x−

x2)F (x) = x, so F (x) = x
1−x−x2 . Expanding with partial fractions, and letting φ = 1+

√
5

2
and

ψ = 1−
√
5

2
, we have F (x) = 1√

5
1

1−φx −
1√
5

1
1−ψx . Expanding as geometric series and taking the

xn coefficient of both sides, we get the classic result fn = 1√
5
(φn − ψn).

This example demonstrates the connections between recurrences, rational generating func-
tions, and explicit formulas, which are more fully outlined in the following theorem.

Theorem 2.2. Let Q be a fixed polynomial of degree d, say 1+c1x+c2x
2+· · ·+cdxd (we assume

the constant term is 1 without loss of generality). The following are equivalent conditions on
the sequence (an)n∈N:

1. The generating function of (an)n∈N,
∑∞

n=0 anx
n, is a rational function P (x)

Q(x)
where P has

lesser degree than Q.

2. The sequence (an)n∈N satisfies the recurrence

an + c1an−1 + · · ·+ cdan−d = 0

for all n ≥ d.
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3. Let ri be the roots of Q, with multiplicity di respectively. Say there are k roots. The
sequence (an)n∈N satisfies the explicit formula

an =
k∑
i=1

Pi(n)(
1

ri
)n,

where each for each i, Pi is a polynomial with degree less than di.

Proof. Fix Q. Say it has degree d. Let V1, V2, and V3 be the sets of sequences of complex
numbers which satisfy each of our three conditions respectively for our given Q.

Lemma 2.3. V1, V2 and V3 are vector spaces over C under the standard definitions of addition
and scalar multiplication of sequences:(xn)n∈N+(yn)n∈N = (xn+yn)n∈N and c(xn)n∈N = (cxn)n∈N.
Furthermore V1 and V2 have dimension d and V3 has dimension at most d.

Proof. Let (an)n∈N, (bn)n∈N be arbitrary sequences in C and let c be an arbitrary constant. We
show that each set is closed under addition and scalar multiplication, which will establish it is
a subspace of CN.

1. Suppose (an)n∈N, (bn)n∈N ∈ V1. By definition,
∑∞

n=0 anx
n = Pa(x)

Q(x)
and

∑∞
n=0 bnx

n = Pb(x)
Q(x)

for some polynomials Pa and Pb with degree less than d. We have
∞∑
n=0

(an + bn)x
n =

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

Pa(x) + Pb(x)

Q(x)
.

Because Pa + Pb has degree less than d, (an)n∈N + (bn)n∈N is in V1 as desired. Similarly,

∞∑
n=0

(can)x
n = c

∞∑
n=0

anx
n =

cPa(x)

Q(x)
.

We have cPa has degree less than d, so c(an)n∈N ∈ V1.

Note that (an)n∈N is isomorphic to the vector space of polynomials with degree less than d
under the mapping of (an)n∈N by taking P (x) = Q(x)

∑∞
n=0 anx

n, and the inverse mapping

of expanding and taking the coefficients of P (x)
Q(x)

. Polynomials of degree less than d are

spanned by the basis of 1, x, x2, · · · , xd−1, and thus have dimension d. We have thus
shown V1 is a vector space of dimension d.

2. Suppose (an)n∈N, (bn)n∈N ∈ V2. By definition, an + c1an−1 + · · · + cdan−d = 0 and bn +
c1bn−1+· · ·+bdan−d = 0 for n ≥ d. We have (an+bn)+c1(an−1+bn−1)+· · ·+cd(an−d+bn−d)
= (an+c1an−1+· · ·+cdan−d)+(bn+c1bn−1+· · ·+cdbn−d) = 0 as desired, so (an)n∈N+(bn)n∈N
is in V2. Furthermore (can)+c1(can−1)+· · ·+cd(can−d) = c(an+c1an−1+· · ·+cdan−d) = 0,
so c(an)n∈N is also in V2

For any sequence in V2, selecting values for a0, a1, · · · , ad−1 uniquely determines the rest

of the sequence by the recurrence. For 0 ≤ i ≤ d− 1, let (s
(i)
n )n∈N be the sequence where

s
(i)
i = 1 and s

(i)
j = 0 for 0 ≤ j ≤ d−1 where j ̸= i. Any (an)n∈N can be uniquely written as

a linear combination of the s(i)’s with (an)n∈N =
∑d−1

i=0 ai(s
(i)
n )n∈N. This is the only linear

combination where the first d terms are the same (which ensures that all the subsequent

terms are equal). Thus (s
(i)
n )n∈N for 0 ≤ i ≤ d− 1 forms a basis.

Consequently V2 is a vector space of dimension d.
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3. Suppose (an)n∈N, (bn)n∈N ∈ V3. Let ri be the roots of Q with multiplicity di respectively.
Say there are k of them. By definition, an =

∑k
i=1 Pi(n)(

1
ri
)n and bn =

∑k
i=1 P

′
i (n)(

1
ri
)n,

where for each i, Pi and P ′
i are polynomials with degree less than di. Then, an + bn =∑k

i=1 Pi(n)(
1
ri
)n+

∑k
i=1 P

′
i (n)(

1
ri
)n =

∑k
i=1(Pi(n)+P

′
i (n))(

1
ri
)n. Because for each i, Pi+P

′
i

is a polynomial with degree less than di, we have that (an)n∈N + (bn)n∈N ∈ V3. Similarly,
can = c

∑k
i=1 Pi(n)(

1
ri
)n =

∑k
i=1 cPi(n)(

1
ri
)n. We have for each i, that cPi has degree less

than di, so c(an)n∈N ∈ V3.

The sequences (nj( 1
ri
)n)n∈N, where 1 ≤ i ≤ k and 0 ≤ j ≤ di − 1, spans V3. There are di

spanning vectors for each root ri, and
∑k

i=1 di = d, so there are d spanning vectors, so the
dimension of V3 is at most d (in fact we will see that it is d but we will show that later).

Let V4 be the set of sequences (an)n∈N such that
∑∞

n=0 anx
n =

∑k
i=1

∑di
j=1 cij(1−

1
ri
x)−j for

some complex cij’s (which can be motivated as the sequences which have a generating function
that admits a partial fraction decomposition). We quickly verify this is a vector space.

Let (an)n∈N, (bn)n∈N be sequences of complex numbers which are in V4 and let c be a
complex constant. We have that

∑∞
n=0 anx

n =
∑k

i=1

∑di
j=1 cij(1 − 1

ri
x)−j and

∑∞
n=0 bnx

n =∑k
i=1

∑di
j=1 c

′
ij(1− 1

ri
x)−j by definition for some constants cij and c

′
ij. We have

∑∞
n=0(an+bn)x

n =∑k
i=1

∑di
j=1(cij+c

′
ij)(1− 1

ri
x)−j, so (an)n∈N+(bn)n∈N ∈ V4. Similarly,

∑∞
n=0(can)x

n
∑k

i=1

∑di
j=1 c·

cij(1− 1
ri
x)−j, so c(an)n∈N ∈ V4.

Let Rij(x) = (1 − 1
ri
x)−j for 1 ≤ i ≤ k and 1 ≤ j ≤ di. This is a set of d functions

(
∑k

i=1 di = d) which spans the generating functions of the sequences. We now verify the
functions are linearly independent (which will show that their corresponding sequences are also
linearly independent). Suppose for the sake of contradiction that we have

∑
cijRij(x) = 0, for

constants cij not identically 0. Take i′ such that for some value of j, ci′j ̸= 0, and let j′ be
the highest value of j such that ci′j ̸= 0. Then, consider

∑
cijRij(x)(1− 1

r′i
x)j

′
evaluated at ri.

Every term except ci′j′Rij(x)(1− 1
r′i
x)j

′
= ci′j′ will vanish, as it will have (1− 1

r′i
x) in its product,

so the sum equals ci′j′ . However, the sum evaluates to 0, so we conclude ci′j′ = 0, which is a
contradiction. Thus our set is a linearly independent, and consequently a basis, proving that
V4 is a vector space of dimension d.

We will show the vector spaces V1, V2, V3, and V4 are equivalent to establish our theorem.
Consider an arbitrary basis vector of V4, say the coefficients of (1− 1

ri
x)−j. Expanding by the

generalized binomial theorem, we get
∑∞

n=0

(−j
n

)
(− 1

ri
)nxn, or the sequence ((−1)n

(−j
n

)
( 1
ri
)n)n∈N =

(
(
j+n−1
n

)
( 1
ri
)n)n∈N. Expanding in terms of n, we have that

(
j+n−1
n

)
= (j+n−1)···(n+1)

(j−1)!
is a degree j

polynomial in n. Thus the sequence is of the form Pi(n)(
1
ri
)n, so any basis of V4 is in V3. We

have V4 ⊆ V3. We thus have d ≥ dimV3 ≥ dimV4 = d, so V3 has dimension d. If a vector space
ant it’s subspace have the same dimension, they must be equal, so V3 = V4.

Consider an arbitrary sequence in V1. We then have that Q(x)
∑∞

n=0 anx
n = P (x). Consid-

ering the coefficient of xn for n ≥ d, we get that an+ c1an−1+ · · ·+ cdan−d = 0 as desired. Thus
we have that V1 ⊆ V2, and V1 = V2.

Consider an arbitrary sequence in V4. It has generating function
∑k

i=1

∑di
j=1 cij(1 −

1
ri
x)−j

for some constants cij by definition. We can convert each of these fractions into the common
denominator of Q(x), and the numerator will have lesser degree. Thus, we have that V4 ⊆ V1,
so V4 = V1.

Thus we have that V1 = V2 = V3 as desired.
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Corollary 2.4. Let Q be a fixed polynomial of degree d, say 1 + c1x + c2x
2 + · · · + cdx

d. The
following are equivalent conditions on the sequence (an)n∈N:

1. The generating function of (an)n∈N,
∑∞

n=0 anx
n, is a rational function P (x)

Q(x)
.

2. The sequence (an)n∈N eventually satisfies the recurrence

an + c1an−1 + · · ·+ cdan−d = 0

.

3. Let ri be the roots of Q, with multiplicity di respectively. Say there are k roots. The
sequence (an)n∈N eventually satisfies the explicit formula

an =
k∑
i=1

Pi(n)(
1

ri
)n,

where each for each i, Pi is a polynomial with degree less than di.

Proof. Suppose (an)n∈N has generating function P (x)
Q(x)

. Through polynomial division, we get
P (x)
Q(x)

= L(x)+ R(x)
Q(x)

where R is the remainder polynomial with degree less than Q. We have that

L(x) is a polynomial, which has some finite degree, so for sufficiently high xn, the coefficients

will equal those of R(n)
Q(n)

which we can apply our Theorem thus implying the recurrence and
explicit formula eventually hold.

If a sequence eventually satisfies either the recurrence or the explicit formula, we can consider
the sequence which fully satisfies the recurrence/explicit formula. By our original theorem, this

has some rational function P (x)
Q(x)

where the degree of P is less than the degree Q. Because
our generating function only differs in a finite number of terms, it can differ at most by some
polynomial, say L(x). Thus we have a rational generating function L(x) + P (x)

Q(x)
.

3 Applications

3.1 Hadamard product

Corollary 3.1. If (an)n∈N and (bn)n∈N are have rational generating functions, their Hadamard
product, or (anbn)n∈N also has a rational generating function

Proof. We have an =
∑k

i=1 Pi(n)(
1
ri
)n and bn =

∑k′

i=1 P
′
i (n)

1
r′i

n
for sufficiently large n by Corol-

lary 3.1. Then anbn =
∑k

i=1

∑
j = 1k

′
Pi(n)P

′
j(n)(

1
ri

1
r′j
)n. We can construct a polynomial with

roots rir
′
j with the correct multiplicity as dictated by the degrees of the Pi(n)P

′
j(n)’s. Then by

Corollary 3.1, we have that (anbn)n∈N is rational.
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Example. We will find the generating function of f 2
n. We have fn = 1√

5
(φn − ψn), so

f 2
n =

1

5
((φ2)n − 2(φψ)n + (ψ2)n).

By Corollary 3.1, we have that this has a rational generating function with denominator (x−
φ2)(x− φψ)(x− ψ2) = x3 − 2x2 − 2x+ 1. We can find the numerator by expanding out terms
of (x3 − 2x2 − 2x+ 1)

∑∞
n=0 f

2
nx

n to get the numerator is x− x2, so the generating function is
x−x2

x3−2x2−2x+1
.

3.2 Asymptotics of rational generating functions

Remark 3.2. The rational generating function can be used to find asymptotics of an. If an has
a root of least modulus, say ri, then in the explicit formula, the Pi(n)(

1
ri
)n term will dominate,

giving the asymptotic an ∼ Pi(n)(
1
ri
)n.

Example. Consider the sequence an of integer partitions of n with summands from some fixed
finite set of integers, say S, with gcd(S) = 1. The generating function for this sequence,∑∞

n=0 anx
n =

∏
s∈S(1 + xs + x2s + x3s + · · · ) =

∏
s∈S

1
1−xs . This is a rational function so we can

use the techniques we have developed. All the roots are roots of unity, and 1 has multiplicity
|S|. All the other roots have less multiplicity as no other root of unity can divide all the terms
1 − xs by our assumption gcd(S) = 1. Thus the term from the root at 1 of order n|S|−1 will
dominate the asymptotics. More careful consideration of the coefficients and partial fraction
expansion, which we will not do here, will give us Schur’s theorem which includes the constant
factor:

an ∼ 1∏
s∈S s

n|S|−1|

(|S| − 1)!
.

The number of ways of breaking change for n cents is a problem of partitioning n into
summands of the set {1, 5, 10, 25, 50}, so by Schur’s theorem there are approximately n4

1500000

ways.
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