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Abstract
In this expository paper we will introduce the Snake Oil method that uses generating func-
tions to deal with the evaluation of combinatorial sums. This method is capable of handling
a great variety of sums involving binomial coefficients, and, within its limitations, on sums
involving other combinatorial numbers. The philosophy is roughly this: don’t try to eval-
uate the sum that you’re looking at. Instead, find the generating function for the whole
parameterized family of them, then read off the coefficients.

1 Motivation

Mathematicians, particularly those working on discrete mathematics, frequently have to
evaluate or simplify complicated looking sums that involve combinatorial numbers. These
sums turn up regularly in connection with problems in graphs, algorithms, enumeration, etc.
(and they’re fun, too!). It is therefore a very useful skill to be able to have different tools for
tackling these kind of sums. In the past, one had to have built up a certain arsenal of special
devices, the more the better, in order to be able to trot out the correct one for the correct
occasion. Recently, however, a good deal of quite dramatic systematization has taken place,
and there are unified methods for handling vast categories of the sums referred to above.
The Snake Oil method is one such.

2 Introduction

The Snake Oil method is generally used when you have a sum over one variable and
another free variable that is not summed over. In the example below, this free variable is
n. The first step in the Snake Oil method is to write a generating function for the sum
that sums through possible values of n. Then, this generating function can be expressed as
a double sum, so we can swtich the order of the summation. Then, we will evaluate both
of the summations from the inside to the outside. This will yield the generating function
for the sum, and now we can determine the general form of a coefficient in the generating
function to find the value of the sum at a particular value of n.

All of the steps above will become clearer in the example below.

Example 2.1. Find a closed form (if one exists) of the sum below∑
k≥0

(
k

n− k

)
(1)

1
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We notice that n is our free variable here, so let an =
∑

k≥0
(

k
n−k

)
. We can form a generating

function for this sum that has the values for this sum at each value of n. Let A(z) be the
OGF corresponding to the sequence {an}n≥0. We get

A(z) =
∑
n

anz
n =

∑
n≥0

∑
k≥0

(
k

n− k

)
zn

Now, we can switch the order of the double summation.

A(z) =
∑
k≥0

∑
n≥0

(
k

n− k

)
zn

We would like to ‘do’ the inner sum, the one over n. The trick is to get the exponent of x to
be exactly the same as the index that appears in the binomial coefficient. In this example
the exponent of x is n, and n is involved in the downstairs part of the binomial coefficient
in the form n − k. To make those the same, the correct medicine is to multiply inside the
sum by x− k and outside the inner sum by xk, to compensate. The result is

A(z) =
∑
k≥0

zk
∑
n≥0

(
k

n− k

)
zn−k

=
∑
k≥0

zk
∑
r≥0

(
k

r

)
zr

=
∑
k≥0

zk(1 + z)k

=
∑
k≥0

(z + z2)k

So we have a geometric series with common ratio z + z2. Thus

A(z) =
1

1− z − z2
It follows that

an =
∑
k≥0

(
k

n− k

)
= Fn

where the Fn’s are the Fibonacci numbers.

3 What is the Snake Oil method, really?

The basic idea is what we might call the external approach to identities rather than the
usual internal method.

To explain the difference between these two points of view, suppose we want to prove some
identity that involves binomial coefficients. Typically such a thing would assert that some
fairly intimidating-looking sum is in fact equal to such-and-such a simple function of n.

One approach that is now customary, thanks to the skillful exposition and deft handling
by Knuth in [3], and by Graham, Knuth and Patashnik in [4], consists primarily of looking



3

inside the summation sign (‘internally’), and using binomial coefficient identities or other
manipulations of indices inside the summations to bring the sum to manageable form.

The Snake Oil method is complementary to the internal approach. In the external, or
generatingfunctionological, approach one begins by giving a quick glance at the expression
that is inside the summation sign, just long enough to spot the ‘free variables,’ i.e., what
it is that the sum depends on after the dummy variables have been summed over. Suppose
that such a free variable is called n.

Then instead of trying to grapple with the sum, just sweep it all under the rug, as follows:

The Snake Oil Method for Doing Combinatorial Sums

(a) Identify the free variable, say n, that the sum depends on. Give a name to the sum
that we are working on; call it an.

(b) Let A(z) be the OGF associated with the sequence a0, a1, a2, . . ., i.e., [zn]A(z) = an.
(c) Multiply the sum by zn, and sum on n. Our generating function is now expressed as a

double sum over n, and over whatever variable was first used as a dummy summation
variable.

(d) Interchange the order of the two summations that we are now looking at, and perform
the inner one in simple closed form. For this purpose it will be helpful to have a
catalogue of series whose sums are known, such as the list in the last section of this
paper.

(e) Try to identify the coefficients of the generating function of the answer, because those
coefficients are what we want to find.

The success of the method depends on favorable outcomes of steps (d) and (e). What
is surprising is the high success rate. It also has the ‘advantage’ of requiring hardly any
thought at all; when it works, you know it, and when it doesn’t, that’s obvious too.

4 Examples

We will now discuss several examples to give the flavor and illustration of the Snake Oil
method. The following series evaluations are most helpful in the examples that follow. First
and foremost, ∑

r≥0

(
r

k

)
xr =

xk

(1− x)k+1
(k ≥ 0).(4.1)

Also useful are the binomial theorem∑
r

(
n

r

)
xr = (1 + x)n(4.2)

and the Catalan numbers generating function:∑
n

1

n+ 1

(
2n

n

)
xn =

1

2x
(1−

√
1− 4x).(4.3)
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Example 4.1. Openers

Consider the sum

an =
∑
k

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1
(m,n ≥ 0)

Can it be that the same method will do this sum, without any further infusion of ingenuity?
Indeed; just pour enough Snake Oil on it and it will be cured. Let f(n) denote the sum in
question, and let F (x) be its opsgf. Dive in immediately by multiplying by xn and summing
over n ≥ 0, to get

F (x) =
∑
n≥0

xn
∑
k

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

∑
n≥0

(
n+ k

m+ 2k

)
xn+k

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

∑
r≥k

(
r

m+ 2k

)
xr

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

xm+2k

(1− x)m+2k+1

=
xm

(1− x)m+1

∑
k

(
2k

k

)
1

k + 1

{
−x

(1− x)2

}k

=
−xm−1

2(1− x)m−1

{
1−

√
1 +

4x

(1− x)2

}

=
−xm−1

2(1− x)m−1

{
1− 1 + x

1− x

}
=

xm

(1− x)m
.

The original sum is now unmasked: it is the coefficient of xn in the last member above. But
that is

(
n−1
m−1

)
, and we have our answer.

If the train of manipulations seemed long, consider that at least it’s always the same train
of manipulations, whenever the method is used, and also that with some effort a computer
could be trained to do it!

Example 4.2. A discovery

Is it possible to write the sum

an =
∑
k≤n/2

(−1)k
(
n− k
k

)
yn−2k (n ≥ 0)(4.4)

in a simpler closed form?
This example shows the whole machine at work again, along with a few new wrinkles.

The first step is to let F be the generating function for the sequence {fn}, and try to find F
instead of the sequence {fn}.



5

To do that we multiply (4.4) on both sides by xn and sum over n ≥ 0 to obtain

F (x) =
∑
n≥0

xn
∑
k≤n

2

(−1)k
(
n− k
k

)
yn−2k.

The next step is invariably to interchange the summations and hope. To try to make the
innermost summation as clean looking as possible, be sure to take to the outer sum any
factors that depend only on k. This yields

F (x) =
∑
k

(−1)ky−2k
∑
n≥2k

(
n− k
k

)
xnyn.

Now focus on (4.4), and try to make the inner sum look like that. If in our inner sum the
powers of x and y were xn−kyn−k, then those exponents would match exactly the upper story
of the binomial coefficient

(
n−k
k

)
, and so after a change of dummy variable of summation we

would be looking exactly at the left side of (4.4)
Hence we next multiply inside the inner sum by x−ky−k, and outside the inner sum by

xkyk. Now we have

F (x) =
∑
k

(−1)ky−2kxkyk
∑
n≥2k

(
n− k
k

)
xn−kyn−k

=
∑
k

(−1)kxky−k
∑
a≥k

(
a

k

)
(xy)a

=
∑
k≥0

(−1)kxky−k
(xy)k

(1− xy)k+1

=
1

1− xy
∑
k≥0

{
−x2

1− xy

}k
=

1

1− xy
1

1 + x2

1−xy

=
1

1− xy + x2
.

We now expand in partial fractions to obtain a closed form for the sum. This gives

F (x) =
1

(1− x+)(1− xx−)

=
x+

(x+ − x−)(1− xx+)
− x−

(x+ − x−)(1− xx−)

where
x± =

1

2
(y ±

√
y2 − 4).

Hence, for n ≥ 0 the coefficient of xn is

fn =
1√
y2 − 4


(
y +

√
y2 − 4

2

)n+1

−

(
y −

√
y2 − 4

2

)n+1
 .
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We now have our answer, but just to demonstrate the effectiveness of cleanup operations,
let’s invest a little more time in making the answer look nicer. Because of the ubiquitous
appearance of

√
y2 − 4 in the answer, we replace y formally by x+ (1/x). Then

√
y2 − 4 = x− 1

x
,

and our formula becomes

∑
k≤n

2

(−1)k
(
n− k
k

)
(x2 + 1)n−2kx2k =

x2(n+1) − 1

x2 − 1
(n ≥ 0).

Finally we write t = x2 to obtain the pretty evaluation

∑
k≤n

2

(−1)k
(
n− k
k

)
(t+ 1)n−2ktk =

1− tn+1

1− t
(n ≥ 0).(4.5)

For instance, the value t = 1 gives

∑
k≤n

2

(−1)k
(
n− k
k

)
2n−2k = n+ 1 (n ≥ 0).

As a final touch, we can read off the coefficient of tm in (4.5) to discover the interesting fact

∑
k≤n

2

(−1)k
(
n− k
k

)(
n− 2k

m− k

)
=

{
1, if 0 ≤ m ≤ n;

0, otherwise.

Example 4.3.

Evaluate the sums

an =
∑
k

(
n+ k

2k

)
2n−k (n ≥ 0)(4.6)
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Without stopping to think, let F be the opsgf of the sequence, multiply both sides of (4.6)
by xn, sum over n ≥ 0, and interchange the two sums on the right. This produces

F =
∑
k

2−k
∑
n≥0

(
n+ k

2k

)
2nxn

=
∑
k

2−k(2x)−k
∑
n≥0

(
n+ k

2k

)
(2x)n+k

=
∑
k≥0

2−k(2x)−k
(2x)2k

(1− 2x)2k+1

=
1

1− 2x

∑
k≥0

{
x

(1− x)2

}k
=

1

1− 2x

1

1− x
(1−2x)2

=
1− 2x

(1− 4x)(1− x)

=
1

3

(
2

1− 4x
+

1

1− x

)
It is now trivial to read off the coefficient of xn on both sides and discover the answer:∑

k

(
n+ k

2k

)
2n−k =

1

3
(22n+1 + 1) (n ≥ 0).

Example 4.4.

The next example is a sum that we won’t succeed in evaluating in a neat, closed form.
However, the generating function that we obtain will be rather tidy, and that is about the
most that can be expected from this family of sums.

The sum is

fn(y) =
∑
k

(
n

k

)(
2k

k

)
yk (n ≥ 0).(4.7)

We follow the usual prescription. Define F (x, y) =
∑

n≥0 fn(y)xn. To find F , multiply (4.7)
by xn, sum over n ≥ 0 and interchange the inner and outer sums, to obtain

F (x, y) =
∑
k

(
2k

k

)
yk
∑
n≥0

(
n

k

)
xn

=
∑
k

(
2k

k

)
yk

xk

(1− x)k+1

=
1

1− x
∑
k

(
2k

k

)(
xy

1− x

)k
.
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Now since ∑
k

(
2k

k

)
zk =

1√
1− 4z

,

we obtain

F (x, y) =
1

(1− x)
√

1− 4xy
1−x

=
1

√
1− x

√
1− x(1 + 4y)

.

For general values of y, that’s about all we can expect. There are two special values of y for
which we can go further. If y = −1/4, we find that∑

k

(
2k

k

)(
n

k

)(
−1

4

)k
= 2−2n

(
2n

n

)
(n ≥ 0).

If y = −1/2, then

F (x,−1/2) = 1/
√

1− x2

=
∑
m

(
2m

m

)(x
2

)2m
.

Hence we have Reed Dawson’s identity∑
k

(
2k

k

)(
n

k

)
(−1)k2−k =

{(
n
n/2

)
2−n if n ≥ 0 is even,

0 if n ≥ 0 is odd,

and Snake Oil triumphs again.

Example 4.5.

Suppose we have two complicated sums and we want to show that they’re the same. Then
the generating function method, if it works, should be very easy to carry out. Indeed, one
might just find the generating functions of each of the two sums independently and observe
that they are the same.

Suppose we want to prove that∑
k

(
m

k

)(
n+ k

m

)
=
∑
k

(
m

k

)(
n

k

)
2k (m,n ≥ 0)

without evaluating either of the two sums. Multiply on the left by xn, sum on n ≥ 0 and
interchange the summations, to arrive at∑

k

(
m

k

)
x−k

∑
n≥0

(
n+ k

m

)
xn+k =

∑
k

(
m

k

)
x−k · xm

(1− x)m+1

=
xm

(1− x)m+1

(
1 +

1

x

)m
=

(1 + x)m

(1− x)m+1
.
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If we multiply on the right by xn, etc., we find∑
k

(
m

k

)
2k
∑
n≥0

(
n

k

)
xn =

1

1− x
∑
k

(
m

k

)(
2x

1− x

)k
=

1

1− x

(
1 +

2x

1− x

)m
=

(1 + x)m

(1− x)m+1
.

Hence the two sums are equal, even if we don’t know what they are!

The followng problem is slightly harder because the standard idea of Snake Oil doesn’t
quite lead to a solution.

Example 4.6. (Moriati). For given n and p evaluate∑
k

(
2n+ 1

2p+ 2k + 1

)(
p+ k

k

)
(4.8)

In order to have shorter formulas let us introduce r = p+ k. If we assume that n is the free
variable then the required sum is equal to

f(n) =
∑
r

(
2n+ 1

2r + 1

)(
r

k

)
.

Take F (x) =
∑

n x
2n+1f(n). This is somehow natural since the binomial coefficient contains

the term 2n+ 1. Now we have

F (x) =
∑
n

x2n+1
∑
r

(
2n+ 1

2r + 1

)(
r

p

)
=
∑
r

(
r

p

)∑
n

(
2n+ 1

2r + 1

)
x2n+1.

Since ∑
n

(
2n+ 1

2r + 1

)
x2n+1 =

1

2
x2r+1

{
1

(1− x)2r+2
+

1

(1 + x)2r+2

}
,

we get

F (x) =
1

2
· x

(1− x)2

∑
r

(
r

p

)[
x2

(1− x)2

]r
+

1

2
· x

(1 + x)2

∑
r

(
r

p

)[
x2

(1 + x)2

]r
=

1

2
· x2p+1

(1− 2x)p+1
+

1

2
· x2p+1

(1 + 2x)p+1

=
x2p+1

2

[
(1 + 2x)−(p+1) + (1− 2x)−(p+1)

]
,

implying

f(n) =
1

2

[(
−p− 1

2n− 2p

)
22(n−p) +

(
−p− 1

2n− 2p

)
22(n−p)

]
,
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and after simplification

f(n) =

(
2n− p
2n− 2p

)
22(n−p).

5 Snake Oil vs. hypergeometric functions

Many combinatorial identities are special cases of identities in the theory of hypergeometric
series (we’ll explain that remark, briefly, in a moment). However, the Snake Oil method
can cheerfully deal with all sorts of identities that are not basically about hypergeometric
functions. So the approaches are complementary.

A hypergeometric series is a series ∑
k

Tk

in which the ratio of every two consecutive terms is a rational function of the summation
variable k. That means that

Tk+1

Tk
=
P (k)

Q(k)
,

where P and Q are polynomials, and it takes in a lot of territory. Many binomial coefficient
identities, including all of the examples in this chapter so far, are of this type. There are
some general tools for dealing with such sums, and these are very important considering how
frequently they occur in practice.

In this example we want to emphasize that the scope of the Snake Oil method includes a
lot of sums that are not hypergeometric. Consider, for instance, the following sum

f(n) =
∑
k

[
n

k

]
Bk,

where the
[ ]

are the Stirling numbers of the first kind, and the B’s are the Bernoulli
numbers.

Now one thing, at least, is clear from looking at this sum: it is not hypergeometric. The
ratio of two consecutive terms is certainly not a rational function of k. The Snake Oil
method is, however, unfazed by this turn of events. If you follow the method exactly as
before, you could define F (x) to be the egf of the sequence {f(n)}, multiply by xn/n!, sum
on n, interchange the indices, etc., and obtain

F (x) =
∑
n

f(n)xn

n!

=
∑
n

xn

n!

∑
k

[
n

k

]
Bk

=
∑
k

Bk

∑
n

[
n

k

]
xn

n!

=
∑
k

Bk

{
1

k!

(
log

1

1− x

)k}
,
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and making the change of variables u = log 1
1−x , we get

=
∑
k

Bk

k!
uk

=
u

eu − 1

=
1− x
x

log
1

1− x
.

If we now read off the coefficient of xn/n! on both sides, we find that the unknown sum is∑
k

[
n

k

]
Bk = −(n− 1)!

n+ 1
(n ≥ 1)(5.1)

6 The scope of the Snake Oil method

The success of the Snake Oil method depends upon being given a sum to evaluate in which
there is a free variable that appears in only one place. Then, after interchanging the order
of the summations, one finds one of the basic power series (4.1) or (4.2) to sum.

At the risk of diminishing the charm of the method somewhat by adding gimmicks to
it, one must remark that in many important cases this limitation on the scope is easy to
overcome. This is because it frequently happens that when an identity is presented that has
a free variable repeated several times, that identity turns out to be a special case of a more
general identity in which each of the repeated appearances of the free variable is replaced
by a different free variable. Before abandoning the method on some given problem, this
possibility should be explored.

Consider the identity ∑
i

(
n

i

)(
2n

n− i

)
=

(
3n

n

)
At first glance the possibilities for successful Snake Oil therapy seem dim because of the
multiple appearances of n in the summand. However, if we generalize the identity by splitting
the appearances of n into different free variables, we might be led to consider the sum∑

i

(
n

i

)(
m

r − i

)
which is readily evaluated by the Snake Oil method. It is characteristic of the subject of
identities that it is usually harder to prove special cases than general theorems. Multi-
ple appearances of a free variable are often a hint that one should try to find a suitable
generalization.
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7 WZ pairs prove harder identities

Computers can now find proofs of combinatorial identities, including most of the identities
that we did by the Snake Oil method in the previous section, as well as many, many more.

This doesn’t mean that it was a waste of time to have learned the Snake Oil method.
There were identities that Snake Oil handled that the method of [WZ] (which is the basis of
one of the prime computer algorithms) cannot deal with, like the fact that

∑
k≥0
(

k
n−k

)
= Fn

for n ≥ 0. Another one that offers no hope to the WZ method is (5.1), which involves Stirling
and Bernoulli numbers. Also, to use the Snake Oil method, one doesn’t need to know the
right hand side of the identity in advance; the method will find it. The methods that we are
describing will prove a given identity, but it won’t discover the identity for itself.

With those disclaimers, however, it is fair to say that the WZ method is quite versatile,
and seems able to handle in a unified way some of the knottiest identities known.
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Appendix
Some useful power series

Generatingfunctionologists need reference lists of known power series and other series that
occur frequently in applications of the theory. Here is such a list.

1

1− x
=
∑
n≥0

xn(7.1)

log
1

1− x
=
∑
n≥1

xn

n
(7.2)

ex =
∑
n≥0

xn

n!
(7.3)

sinx =
∑
n≥0

(−1)n
x2n+1

(2n+ 1)!
(7.4)

cosx =
∑
n≥0

(−1)n
x2n

(2n)!
(7.5)

(1 + x)n =
∑
k≥0

(
n

k

)
xk(7.6)

1

(1− x)k+1
=
∑
n

(
n+ k

n

)
xn(7.7)

tan−1 x =
∑
n≥0

(−1)n
x2n+1

2n+ 1
(7.8)

1√
1− 4x

=
∑
k

(
2k

k

)
xk(7.9)

1

2x

(
1−
√

1− 4x
)

=
∑
n

1

n+ 1

(
2n

n

)
xn(7.10)


