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PARTH CHAVAN

Abstract. This paper is an exposition of the Frobenius number problem and the restricted
partition function. In this note we compute the Frobenius number g(a, b) and the restricted
parttiton function in terms of Fourier-Dedekind sums. This paper is a part of Generating
function class of 2021 and serves as a resource where students can learn from.

1. Introduction

The restricted partition function is defined by

pa(n) = #

{
(x1, x2, . . . , xr) ∈ Nr

∣∣∣∣ r∑
i=1

aixi = n

}
for fixed integer vector (x1, x2, . . . , xr) ∈ Nr. It is known that ( [1], Theorem 1.8)

pa(n) =
(−1)r

(r − 1)!
BX

r (−n) + s−n(a2, a3, . . . , ar; a1) + s−n(a3, a4, . . . , a1; a2) + . . .+

s−n(a1, a2, . . . , ar−1; ar)

where

sn(a1, . . . , ar; b) :=
1

b

b−1∑
j=1

ϵjnb
(1− ϵja1b ) . . . (1− ϵxb

)jar

whenever a1, . . . , ar are pairwise relatively prime. The Frobenius problem asks us to find
the largest positive integer n such that pa(n) = 0 and is called the Frobenius number and
denote it by g(a1, . . . , ar). Let V(a1,a2,...,ar) = {i|i = m1a1 + m2a2 + . . . + mrar ,mj > 0}.
V is a semigroup as it neither has inverses nor an identity element but has closure and
associativity with respect to addition. Also note that pa(min(V(a1,a2,...,ar)) − 1) = 0 and
pa(min(V(a1,a2,...,ar) + k) > 0 for all k ∈ N0.
There is a geometric interpretation of restricted partition function. Let

G = {(a1, . . . , ad) ∈ Rd | ai ≥ 0∀ 1 ≥ i ≥ d , x1a1 + . . .+ xdad = 1}

The nth dilate of a set S ⊂ Rd is defined as

{(na1, . . . , nad) | (a1, . . . , ad) ∈ Rd}

The restricted partition function counts precisely the non-negative integer lattice points in
the nth dilate G. The set G turns out to be a polytope.
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2. Existence of Frobenius number and Partial fraction decomposition

In this section we prove that Frobenius number exists and uniqueness of partial fraction
expansion of a rational function.

Theorem 2.1. Given (a1, a2, . . . , ak) such that gcd(a1, a2, . . . , ak) = 1 then exists an integer
N such that any integer s ≥ N is representable as a non-negative integer combination of
a1, ..., an.

Proof. Since gcd(a1, a2, . . . , ak) = 1 we can write m1a1 + m2a2 + . . . + mkak = 1 for some
integers mi. Denote by P and −Q the sum of positive terms and negative terms in this
decomposition respectively, P and Q belong to the semigroup V(a1,a2,...,ak). We now have
P − Q = 1. Any integer r ≥ 0 can be written as sa1 + t where 0 ≤ t < a1. We now have
a1(Q − 1) + r = sa1 + (a1 − 1 − t)Q + tP which is also in the semigroup V(a1,a2,...,ak). Thus
q ∈ V(a1,a2,...,ak) for all q ≥ x1(Q− 1). ■

The above proof implies min{n|pa(n) = 0} < min a1, a2, . . . , ak(Q − 1). However this
bound can be largely improved.
We now prove uniqueness of partial fraction decomposition of rational functions which we
use to give an alternate way to compute pa1,a2(n). To prove uniqueness of partial fraction

decomposition of rational functions F = n(z)
r(z)

it suffices to consider the case deg(n(z)) ≤
deg r(z) as we can always reduce the degree of n(z) by division algorithm.

Theorem 2.2. Given a rational function P (z) = f(z)∏n
i=1(z−ai)e1

where
∑n

i=1 ei ≥ deg(f) and

ai ∈ C then there exists a decomposition

P (z) =
n∑

i=1

(
ei∑

k=1

bk,i
(z − ai)k

)
where bk,i ∈ C are unique.

To prove the above theorem we first need some intermediate lemmas.

Lemma 2.3. If f, g ∈ C[x] where g ̸= 0. Suppose that g = ab where a, b ∈ C[x] and
gcd(a, b) = 1 then f

g
= c

a
+ d

b
for some c, d ∈ C[x]

Proof. Since C[x] is a euclidean domain, there exist k, l ∈ C[x] such that ak + bl = 1. Thus
f = afk + bfl and so

f

g
=

afk + bfl

ab
=

fk

b
+

fl

a

So fl = c and fk = b are the required elements of C[x] ■

Lemma 2.4. If f, g ∈ C[x] where g ̸= 0 and g = ak11 ak22 . . . akll where ai ∈ C[x] , ai are
pairwise relatively prime and kj ∈ N. Then

f

g
=

c1

ak11
+

c2

ak22
+ . . .+

cl

akll

for some c1, c2, . . . , cl ∈ C[x].
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Proof. Since a1 is relatively prime with each of ai where 2 ≥ i ≥ n, applying lemma 2.4 we
have

f

g
=

c1

ak11
+

b1

ak22 . . . akll
It suffices to iterate this process again. ■

Proof of Theorem 2.2

Proof. With lemma 2.4 it suffices to prove that

F

gk
= q +

r1
g
+

r2
g2

+ . . .+
rk
gk

where F, g, q, r1, r2, . . . , rk ∈ C[x] . Since C[x] is Euclidean , we can write F = gqk+rk where
deg (rk) < deg(g). Now applying division algorithm again we have qk = gqk−1 + rk−1 where
deg(rk−1 ≤ deg(qk−1)). Continuing in this fashion,

F

gk
=

gqk + rk
gk

=
rk
gk

+
g2qk−1 + grk−1

gk
= . . . = q +

r1
g
+

r2
g2

+ . . .+
rk
gk

■

Note that division by x−ai ∈ C[x] to any polynomial has a remainder which is a complex
number.

3. Computing g(a, b)

The main result we prove in this section is

Theorem 3.1. If a1 and a2 are relatively prime positive integers, then

g(a, b) = ab− a− b

We begin be seeing that

1

(1− za)(1− zb)
=

∞∑
t=0

pa,b(t)z
t

Thus,

pa,b(t) = [z0]
1

(1− za)(1− zb)zt

Computing the restricted partition function by partial fractions is illustrated by following
example.
Note that [

z−1
] 1

zt+1(1− za)(1− zb)
= pa,b(t)

Also ∮
|z|=R

1

zt+1(1− za)(1− zb)

tends to 0 as R → ∞ as ∣∣∣∣∮
|z|=R

1

zt+1(1− za)(1− zb)

∣∣∣∣ ≤ 2πR

Rt+1
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Denote ϵa = e
2iπ
a . By residue theorem,

Resz=0
1

(1− za)(1− zb)zt+1
+

a−1∑
k=0

Resz=ϵka

(
1

(1− za)(1− zb)zt+1

)
+

b−1∑
k=0

Resz=ϵkb

(
1

(1− za)(1− zb)zt+1

)
= 0

However N(t) = Resz=0
1

(1−za)(1−zb)zt+! . As we have simple poles at ath and bth roots of unity

except we have a pole of order 2 at z = 1. We can compute

Resz=ϵka

(
1

(1− za)(1− zb)zt+1

)
=

1

a
lim
z→ϵka

1

(1− zb)zt+1
=

1

a

ϵ
−(t+1)b
a

1− ϵkba

Resz=1

(
1

(1− za)(1− zb)zt+1

)
= lim

z→1

d

dz
(1− z)2

1

(1− za)(1− zb)zt+1
=

t

ab
+

1

2a
+

1

2b

Thus

Nm(t) =
t

ab
+

1

2a
+

1

2b
+

1

a

a−1∑
k=1

ϵ
−(t)b
a

ϵkba − 1
+

1

b

b−1∑
k=1

ϵ
−(t)a
b

ϵkab − 1

Another way to see this would be using partial fraction expansion. Let p(z) = 1
(1−za)(1−zb)zt

and suppose

p(z) =
t∑

i=1

Ai

zi
+

B1

z − 1
+

B2

(z − 1)2
+

a−1∑
k=1

Ck

z − ϵka
+

b−1∑
j=1

Cj

z − ϵjb

As we are interested in the constant term we can ignore the principal part of the partial
fraction expansion. To obtain B2 we multiply p(z) by (z − 1)2 and take the limit as z → 1
to get

lim
z→1

(1− z)2
1

(1− za)(1− zb)zt
=

1

ab

For computing B1 we subtract the term of pole of order two from p(z) and take the limit as
z → 1 to get

lim
z→1

(1− z)

(
1

(1− za)(1− zb)zt
− 1

ab(1− z)2

)
=

1− t

ab
− 1

2a
− 1

2b

To calculate Ck multiply p(z) by ϵka − z and take the limit as z → ϵka to get

lim
z→ϵka

(ϵka − z)
1

zt(1− za)(1− zb)
= lim

z→ϵka

ϵka
aza−1

lim
z→ϵka

1

zt(1− zb)
=

1

a(ϵkba − 1)ϵ
k(t−1)
a

Similarly,

Dk =
1

a(ϵkab − 1)ϵ
k(t−1)
b

However R(a, b) being constant term of p(z) we get

R(a, b) =

(
B1

z − 1
+

B2

(z − 1)2
+

a−1∑
k=1

Ck

z − ϵka
+

b−1∑
j=1

Cj

z − ϵjb

)∣∣∣∣
x=0

=
t

ab
+

1

2a
+

1

2b
+

1

a

a−1∑
k=1

ϵ−kt
a

ϵkba − 1
+

1

b

b−1∑
k=1

ϵ−kt
b

ϵkab − 1
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If b = 1 one of the sum vanishes and we have

Na,1(t) =
t

a
+

1

2a
+

1

2
+

1

a

a−1∑
k=1

ϵ−kt
a

ϵkba − 1

However

Na,1(t) = |{(m1,m2)|(m1,m2) ∈ Z2
≥0, x− 1m2 +m2 = t}

= |{m1 ∈ Z|0 ≥ m1 ≥
t

a
}|

=

⌊
t

a

⌋
+ 1

Thus we have
1

a

a−1∑
k=1

ϵ−kt
a

ϵkba − 1
=

1

2
− 1

2a
−
{
t

a

}
where

{
t
a

}
= t

a
−
⌊
t
a

⌋
As gcd(a, b) = 1 there exists b−1 ∈ Z/aZ such that bb−1 ∼= 1 (mod a).

Also b being a unit the sets Z/aZ and b−1Z/aZ are same. Thus

1

a

a−1∑
k=1

ϵ−kt
a

ϵkba − 1
=

1

a

a−1∑
k=1

ϵ−ktb−1

a

ϵka − 1

which says

1

a

a−1∑
k=1

ϵ−kt
a

ϵkba − 1
=

1

2
−
{
ab−1

t

}
− 1

2a

After substitution this yields a formula due to Peter Barlow and Tiberiu Popoviciu .

Theorem 3.2. If a, b are relatively prime than

Na,b(t) =
t

ab
−
{
tb−1

a

}
−
{
ta−1

b

}
+ 1

where bb−1 ∼= 1 (mod a) and aa−1 ∼= 1 (mod b)

Now we prove an intermediate result which we will use to compute R(a, b).

Proposition 3.3. If a, b are relatively prime positive integer and t ∈ [ab − 1] and is not a
multiple of a or b then

Na,b(t) +Na,b(ab− n) = 1

Proof. Using Theorem 3.1,

Na,b(ab− t) =
ab− t

ab
−
{
(ab− t)b−1

a

}
−
{
(ab− t)a−1

b

}
+ 2

= 2− t

ab
−
{
−ta−1

b

}
−
{
−tb−1

a

}
=

−t

ab
+

{
tb−1

a

}
+

{
ta−1

b

}
= 1−Na,b(t)

■
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Proof of Theorem 3.1 From Proposition 3.3 and pa,b(a+ b) = 1 we have proved g(a, b) =
ab− a− b. Noting that

{
m
a

}
≤ 1− 1

a
and from Theorem 3.2 we have

pa,b(ab− a− b+ n) ≥ ab− a− b

n
−
(
1− 1

a

)
−
(
1− 1

b

)
+ 1 =

n

ab
> 0

Note that we have proved even more. By Proposition 3.3 , exactly half of integers in [ab− 1]
that are not divisible by a or b are representable and representable integers less than ab have
a unique representation. This is sylvester’s theorem.

Theorem 3.4 (Sylvester’s Theorem). Let a, b be relatively prime integers. Exactly half of
integers between 1 and (a− 1)(b− 1) are representable by a, b.

4. Computing Restricted partition function

For reasons of simplicity we assume here gcd(ai, aj) = 1. Note that with this assumption
all poles except z = 1 are simple of the generating function of pa(t). In similar fashion to
previous section,

∞∑
t=0

Nm(t)zt =
1

(1− za1) . . . (1− zad)

and so

Resz=0

(
1

zt+1(1− za1) . . . (1− zad)

)
= Nm(t)

Also ∮
|z|=R

1

zt+1(1− za1) . . . (1− zad)
dz

tends to 0 as R → ∞ by the same argument as given in previous section. Let

f(z) =
1

zt+1(1− za1) . . . (1− zad)

then we have ∑
ai∈X

ai−1∑
j=1

Resz=ϵjai
(f(z)) + Resz=1(f(z)) + Resz=0(f(z)) = 0

where X = {a1, . . . , ad}.
We now compute

Resz=ϵkai
f(z) = lim

z→ϵkai

(ϵkai − z)f(z) =
ϵ
−(t+1)k
ai

ai
∏

y∈X−{ai}(1− ϵkyai )

To compute the residue at 1 we have

Resz=1f(z) = Resz=0e
zf(ez)

However note that
zdexz

(ea1z − 1) . . . (eadz − 1)
=

∞∑
k=0

BX
k (x)

zk

k!

Where BX
k are called as Bernoulli-Barnes polynomial. Thus

Resz=0e
z =

(−1)d

(d− 1)!
BX

d (−t)
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Let us define

sn(a1, a2, . . . , ad−1; ad) =
1

t

n−1∑
k=1

ϵknad
(1− ϵkx1

ad ) . . . (1− ϵad−1
)kn

These are called as Fourier-Dedekind sums. In this notation,

pa(t) =
(−1)d

(d− 1)!
BX

d (−t)+s−n(a2, a3, . . . , ad; a1)+s−n(a3, a4, . . . , a1; a2)+. . .+s−n(a1, a2, . . . , ad−1; ad)

The term (−1)d

(d−1)!
BX

d (−t) is also called as polynomial part of the restricted partition function

denoted polyA(n).

Example. Computing Bernoulli Banes polynomial for d = 3, 4 yields

Na,b,c(t) =
t2

2abc
+

t

2

(
1

ab
+

1

ac
+

1

bc

)
+

1

12

(
3

a
+

3

b
+

3

c
+

a

bc
+

b

ac
+

c

ab

)
+s−t(b, c; a) + s−t(c, a; b) + s−t(a, b; c)

and

Na,b,c,d(t) =
n3

6abcd
+

n2

4

(
1

abc
+

1

abd
+

1

acd
+

1

bcd

)
+

n

12

(
3

ab
+

3

ac
+

3

ad
+

3

bc
+

3

bd
+

3

ad
+

a

bcd
+

b

cda
+

c

dab
+

d

abc

)
+

1

24

(
a

bc
+

a

bd
+

a

cd
+

b

ac
+

b

ad
+

b

cd
+

c

ab
+

c

ad
+

c

bd
+

d

ab
+

d

ac
+

d

bc

)
+s−t(a, b, c; d) + s−t(b, c, d; a) + s−t(c, d, a; b) + s−t(d, a, b; c)

Following examples illustrate how to compute the restricted parttiton function using par-
tial fractions.

Example. We may compute p1,2(m).

1

(1− z2)(1− z3)
=

1

4

(
1

1 + z
+

1

1− z
+

2

(1− z)2

)

=
1

4

(
∞∑

m=0

(−1)mzm +
∞∑
z=0

zm + 2
∞∑
z=0

(m+ 1)zm

)
which gives us p1,2(m) = 1

4
(2m+ 3 + (−1)m)

Example. We now compute p1,2,3(n)

1

(1− z)(1− z2)(1− z3)
=

1

6(1− z)3
+

1

4(1− z)2
+

1

4(1− z2)
+

1

3(1− z3)

=
1

6

∞∑
m=0

(m+ 1)(m+ 2)

2
zm +

1

4

∞∑
m=0

(m+ 1)zm +
1

4

∞∑
m=0

z2m +
1

3

∞∑
m=0

z3m

and this is equivalent to

p1,2,3(m) =

⌊
m2 + 6m+ 5

12

⌋
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5. Bounds on restricted partition function

Fourier dedekind sums are difficult to compute. In next section we outline some results
about reciprocity of Fourier dedekind sums. The knowledge of an exact formula for pa(n) is
very important in many branches of mathematics. It is not surprising that finding formulas
for restricted parttition functionis very difficult since determining whether pa(n) > 0 is an
NP complete problem. Thus approximation formulas for pa(n) are of great interest. Below
is an instance of such a bound.

Theorem 5.1. Let a1, a2, . . . , am be such that gcd (a1, . . . , am) = 1. Then

px1,...,xm(t) ∼
tm−1

a1a2 . . . am(m− 1)!
as x → ∞.

Proof. Consider the generating function

f(z) =
1

(1− za1)(1− za2) . . . (1− zam)
=

∞∑
t=0

pa1,...,am(t)z
t

As stated before all poles of f(z) lie on the unit circle and the pole z = 1 has multiplicity m

where as other poles which are roots of unity (i.e. ω = e
2iπk
ai ). Indeed order of pole ω will be

number of aj such that ai | kaj which is strictly less than m as gcd(a1, a2, . . . , am) = 1. So
there will be a term in the c

(1−z)m
partial fraction expansion of f . Coefficient of zt in c

(1−z)m
is

c
(
t+m−1
m−1

)
. All other terms in the partial fraction expansion will be of the form b

(1−ωz)j
which

contribute b×ωj
(
m+j
j−1

)
. The total sum of all these terms is negligible to c

(
t+m−1
m−1

)
since j < m

and as t → ∞, we have pa1,...,am(t) ∼ c
(
t+m−1
m−1

)
or pa1,...,am(t) ∼ c mt−1

(m−1)!
. From the partial

fraction expansion,

f(z) =
1

(1− z)m
+O((1− z)−m+1)

or
(1− z) . . . (1− z)

(1− zx1) . . . (1− z)xm
= c+ (1− z)mO(z−m+1)

and by L’hopital’s rule limz→∞
1−z
1−zai

= 1
ai

whereas (1− z)mO(z−m+1) → 0 as z → ∞. Thus

c = 1
a1...am

and

pa1,...,am(t) ∼
tm−1

a1a2 . . . am(m− 1)!
as x → ∞

■

6. Fourier-Dedekind sums

In this section we give a reciprocity result for Fourier-Dedekind sums. In many ways, the
Dedekind sums extend the notion of the greatest common divisor of two integers. Following
surprising result is an instance of reciprocity of Fourier-Dedekind sums.

Theorem 6.1 (Zagier Reciprocity). For all relatively prime positive integers a1, a2, . . . , ad,

s0(a2, a3, . . . , ad; a1) + s0(a1, a3, a4, . . . , ad; a2) + . . .+ s0(a1, a2, . . . , ad−1; ad)

= 1− polya1,a2,...,ad(0)
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Proof. We compute the constant term of quasipolynomial pA(n)

pA(0) = polya1,a2,...,ad(0) + s0(a2, a3, . . . , ad; a1) + s0(a1, a3, a4, . . . , ad; a2) + . . .

+s0(a1, a2, . . . , ad−1; ad)

using the fact that Ehrhart quasipolynomial LP of the rational convex polytope P ⊂ Rd

satisfies LP(0) = 1 we have

1 = polya1,a2,...,ad(0) + s0(a2, a3, . . . , ad; a1) + s0(a1, a3, a4, . . . , ad; a2) + . . .

+s0(a1, a2, . . . , ad−1; ad)

as desired. ■

As a corollary we have

Corollary 6.2. For pairwise relatively prime positive integers a, b, c

s0(a, b; c) + s0(b, c; a) + s0(c, a; b) = 1− 1

12

(
3

a
+

3

b
+

3

c
+

a

bc
+

b

ac
+

c

ab

)
7. Alternate expression of restricted partition function

In this section we prove simplified expression for the restricted partition function which is
the main result of the recent paper [2]. We adopt its proof from [3]

Theorem 7.1. The restricted partition function may be expresed as

pa(n) =
∑
j∈ J

a1j1+...+arjr ∼=n (mod D)

(n−a1j1+...+arjr
D

+ r − 1

r − 1

)

where D = lcm(a1, . . . , ar) and the summation index runs over

J =

{
j = (j1, . . . , jr)| j ∈ Nr, 0 ≤ j1 ≤

D

a1
− 1, . . . , 0 ≤ jr ≤

D

ar
− 1

}
Proof. From the generating function∑

pa(n)z
n =

∏ 1

1− zai

can be transformed by forcing each term to have common denominator 1− zD

1

1− zai
=

1−zD

1−zai

1− zD
=

∑D
ai

−1

k=0 zkai

1− zD

which yields ∑
pa(n)z

n =
1

(1− zD)r

∑
j∈J

za1j1+...+arjr

Expanding the denominator

1

(1− zD)r
=

∞∑
p=0

(
p+ r − 1

r − 1

)
zpD
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which gives ∑
pa(n)z

n =
∑
j∈J
p≥0

(
p+ r − 1

r − 1

)
zpD+a1j1+...+arjr

Identifying the coefficient of zn in both expressions we have

pa(n) =
∑
j∈ J

(n−a1j1+...+arjr
D

+ r − 1

r − 1

)
where the summation consists of all such indices j such that

pD + a1j1 + . . .+ arjr = n

which is equivalent to the condition

a1j1 + . . .+ arjr ∼= n (mod D)

■
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