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Abstract

The present paper provides an analysis on D-Finite Generating functions. It was completed in the
context of Euler Circle Generating Functions class. Here we consider a class of power-series, which
we call differentiably finite, whose coefficients can be quickly computed. At first we will delve into
the theory of differential equations, by giving an overview over the main properties and the classical
algorithms for D-finite functions. In the end we will examine how D-finite generating functions and
asymptotic counting help us study the evolution of k-non crossing σ -canonical RNA structures.

1 Definitions

1.1 k-noncrossing

K-noncrossing is a set of distinct arcs (i1, j1), (i2, j2), ..., (ik, jk), such that:
i1 < i2 < ... < ik < j1 < j2 < ... < jk. A graph without k-crossings is a k-noncrossing graph and a
k-noncrossing graph without isolated points is called a k-noncrossing matching.

1.2 stack

Stack of size σ, Sσi,j , is the maximal sequence of ”parallel” arcs,
((i, j), (i+ 1, j − 1), ..., (i+ (σ − 1)..., (i+ (σ − 1), j − (σ − 1))).
A stack of size σ is called a σ -stack.

1.3 k-noncrossing, σ -canonical structures

A k-noncrossing, σ -canonical structures is a k-noncrossing graph with minimum arc length, λ ≥ 2, and
minimum stack size σ. The nucleus is a k-noncrossing structure with minimum arc length λ ≥ 2, where
every stack has size 1.
Vk, which will appear often in this paper, is a k-noncrossing matching with stacks of size exactly 1.

2 Introduction

The purpose of this dissertation is to study the interplay between holonomic functions and the structure
of RNA false nodes. Here we note that, that the functions of various types RNA structures will be
considered known for the purpose of the paper, since they get extracted from methods exceed the fringes
of mathematics. Before we move on with the main theorems let’s start with some basic definitions.

3 D-Finiteness

A formal power series y ε C [[x]] is called D-finite (differentially finite) if it satisfies a linear homogeneous
differential equation with polynomial coefficients.
The importance of D-finiteness in the enumeration comes from the fact that a function generator is D-
finite if and only if its coefficients are P-recursive. (polynomially recursive).
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Examples of holonomic functions and sequences:

(1) all algebraic functions,

(2)all sine and cosine functions,

(3)exponential functions and logarithms,

(4)the generalized hypergeometric function,

(5)the error function,

(6)the Bessel function,

(7)the Airy functions,

(8)all constant-recursive sequences,

(9)the sequence of factorials n!,

(10)the Catalan numbers,

(11)the Motzkin numbers,

(12)the sequence of derangements,

3.1 P-recursiveness

P-recursive (polynomially recursive) is called a sequence if there exist polynomials
p0(n), ..., pm(n)εC [n], with pm(n) 6= 0, such that for every n ε N :
pm(n)f(n+m) + pm−1(n)f(n+m− 1) + ...+ p0(m)f(n) = 0.
A power series is called algebraic if there exist polynomials q0(x), ..., qm(x)εC [[x]], with qm(x) 6= 0, such
that qmF

m(x) + qm−1F
m−1(x) + ...+ q1F (x) + q0(x) = 0.

3.1.1 Theorem (Stanley 2012)

For the P-Recursive series, D-Finite and algebraic power series the following are true:

a. If f, g are P-Recursive then f · g is P-Recursive.

b. If F,G are D-Finite and a,b εC, then aF + bG and FG are D-Finite.

c. If F is D-Finite and G is algebraic with G(0) = 0, then F (G((x)) is D-Finite.

Proof:
We will prove (c) first, which will be useful later on. Since G(0)=0, F(G(x)) is well-defined. Let
K=F(G(x)). Then K(i) is a linear combination of F (G(x)), F ′(G(x)), ..., over C [G,G′, ...] , that is the
polynomial ring in G,G’,... with complex coefficients. Let G(i)εC, i ≥ 0 hence C [G,G′, ...] ⊂ C(x,G),
where C(x,G) denotes what is produced by x and G.
Since G is algebraic, it satisfies:
qd(x)Gd(x) + qd−1(x)Gd−1(x) + ...+ q1(x)G(x) + q0(x) = 0, where q0(x), ..., qd(x)εC [x] , qd(x) 6= 0
and d is minimum, that is (Gi(x))d−1i=0 is linearly independent over C [x].

Let P (x,G) = qd(x)Gd(x) + qd−1(x)Gd−1(x) + ...+ q1(x)G(x) + q0(x).

We differentiate both sides and we get:

0 = d
dxP (x,G) = ϑP (x,y)

ϑx

∣∣∣y=G +G′ ϑP (x,y)
ϑy

∣∣∣
y=G

.
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The degree of ϑP (x,y)
ϑy |y=G in G is smaller than d-1 and qd(x) 6= 0, hence ϑP (x,y)

ϑy |y=G 6= 0.
As a result:

G′ = −
ϑP (x,y)
ϑx |y=G

ϑP (x,y)
ϑy |y=G

εC(x,G).

By repeating the aforementioned process, we can conclude that G(i)εC(x,G), i ≥ 0, thus
C [G,G′, ...] ⊂ C(x,G), and our hypothesis is true. We denote by V the vector space in C(x,G) that is
generated from F(G(x)), F’(G(x)),...Since F is D-Finite, we know that dimC(x) 〈F, F ′, ...〉 < ∞, which
implies that dimC(G) 〈F (G), F ′(G), ...〉 is finite. Knowing that C(G) ⊂ C(x,G) we obtain the following:
dimC(x,G) 〈F, F ′, ...〉 <∞.
This allows us to conclude that dimC(x,G)V <∞ and dimC(x)C(x,G) <∞.
Hence, dimC(x)V = dimC(x,G)V · dimC(x)C(x,G) <∞ and because of the fact that K(i)εV, we conclude
that F (G(x)) is D-finite.

4 The equation Fk(z)

4.1 Lemma

Let Ir(2x) =
∑
j≥0

x2j+r

j!(r+j)! be a Bessel function of the first kind with degree r. The generating function of

the k-noncrossing matchings is given from the formula below:
∑
n≥0 fk(2n) x2n

(2n)! = det [Ii−j(2x)− Ii+j(2x)] |k−1i,j=1.

The lemma above is important because it implies that Hk(z) =
∑
n≥0 fk(2n) z2n

(2n)! is D-finite.

This observation will prove to be particularly significant later on.

Theorem 2.2.1 and 2.1.2 will be presented without a proof, since their proofs exceed the goal of this
paper.

4.1.1 Theorem (Reidys 2011)

For an arbitrary kεN, k ≥ 2, arg(z) 6= ±π2 , the following is true:

Hk(z) =
[∏k−1

i=1 Γ(i+ 1− 1
2 )
∏k−2
r=1 r!

]
( e

2π

π )k−1z−(k−1)
2− k−1

2 (1 + O(|z|−1)), where Γ(z) is the gamma

function.

4.1.2 Theorem (Reidys 2011)

For an arbitrary kεN, k ≥ 2, we have that fk(2n) = ckn
−((k−1)2+(k−1)/2), where ck > 0.

4.1.3 Lemma

The generating function of the combinatorial class of the k-noncrossing matchings of 2n vertices,
Fk(z) =

∑
n≥0 fk(2n)zn is D-finite.

Proof: From lemma 2.1 we know the exponential generating function of of fk(2n), which is:∑
n≥0 fk(2n) x2n

(2n)! = det [Ii−j(2x)− Ii+j(2x)] |k−1i,j=1, where Im(x) is a Bessel function of the first kind.

This function satisfies In(x) = i−nJn(ix) with Jn(x) being the solution of Bessel’s functional equation:

x2 d
2y
dx2 + x dydx + (x2 − n2)y = 0. Notice that for every nεN, Jn(x) is D-finite.

Let G(x) = ix.
Obviously, G(x)εCalg [x] and G(0) = 0, hence Jn(ix) and In(x) are D-finite according to (c) of theorem
1.1.1. Similarly, we prove that In(2x) is D-finite for some constant n ε N .

From
∑
n≥0 fk(2n) x2n

(2n)! = det [Ii−j(2x)− Ii+j(2x)] |k−1i,j=1 and (b) of theorem 1.1.1, we conclude that

Hk(x) =
∑
n≥0

fk(2n)
(2n)! x

2n is D-finite. In other words, the sequence f(n) = fk(2n)
(2n)! is P-recursive and

g(n) = (2n)! is also P-recursive, since (2n+ 1)(2n+ 2)g(n)− g(n+ 1) = 0.

As a result, fk(2n) = f(n)g(n) is P-recursive, which proves that Fk(z) =
∑
n≥0 fk(2n)zn is D-finite.
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Since, Fk(z) is D-finite, there exists an e ε N , such that it satisfies an ordinary differentiable equation of

the form: q0,k(z) d
e

dzeFk(z) + q1,k(z) d
e−1

dze−1Fk(z) + ...+ qe,k(z)Fk(z) = 0, where qj,k(z) are polynomials.

Knowledge of this particular ODE is particularly significant for two reasons:

(i)every dominant singularity of a solution belongs in the roots of q0,k(z).In other words, the ODE
checks the dominant singularities that are important for the asymptotic counting.

(ii)under specific conditions, the singular expansion of Fk(z) follows from the ODE. (lemma 2.1.4) Sub-
sequently, we present without a proof (Reidys 2011) the ordinary differentiable equations of Fk(z) for
2 ≤ k ≤ 9, but also the singular expansion of Fk(z).

4.1.4 Lemma

For 2 ≤ k ≤ 9, we have:
q0,2 = (4z − 1)z,
q0,3 = (16z − 1)z2,
q0,4 = (144z2 − 40z + 1)z3,
q0,5 = (1024z2 − 80z + 1)z4,
q0,6 = (14400z3 − 4144z2 + 140z − 1)z5,
q0,7 = (147456z3 − 12544z2 + 224z − 1)z6,
q0,8 = (2822400z4 − 826624z3 + 31584z2 − 336Z + 1)z7,
q0,9 = (37748736z4 − 3358720z3 + 69888z2 − 480Z + 1)z8.

The equations above, combined with theorem 2.1.2 show that for 2 ≤ k ≤ 9 the only dominant sin-
gularity of Fk(z) is given from ρ2k, where ρk = 1

2(k−1) .

4.1.5 Lemma

For 2 ≤ k ≤ 9, the singular expansion of Fk(z) for z → ρ2k is given from the formula below:

Fk(z) = Pk(z − ρ2k) + c′k(z − ρ2k)((k−1)
2+ k−1

2 )−1

log(z − ρ2k)(1 + o(1)), if k is odd,

Fk(z) = Pk(z − ρ2k) + c′k(z − ρ2k)((k−1)
2+ k−1

2 )−1

(1 + o(1)), if k is even.
In addition, the terms of Pk(z) are polynomials of such a degree that is not greater than (k−1)2+ k−1

2 −1,c′k
is a constant and ρk = 1

2(k−1) .

5 Asymptotic counting

Now that we have the necessary tools, we can proceed with the asymptotic counting of various struc-
tures. Subsequently we will end up with the asymptotic counting of k-noncrossing sigma-canonical RNA
sequences with minumum arc length of 4. The generating function Ik(s,m) of k-noncrossing graphns,
with length 2s and m 1-arcs, is given from:

Ik(z, u) = 1+z
1+2z−zuFk( z(1+z)

(1+2z−zu)2 ).

5.0.1 Theorem (Reidys and Wang 2010)

For 2 ≤ k ≤ 9, the number of Vk shapes of length 2s is given asymptotically from the formula:
ik(s) = cks

−((k−1)2+(k−1)/2)(µ−1k )s, where µk is the only real solution to the equation z
1+z = ρ2k and ck is

some positive constant.

Proof:
The generating function Fk(z) =

∑
n≥0 fk(2n)zn is D-finite and the internal function θ(z) = z

1+z
is algebraic, satisfies the θ(0) = 0 and is analytic for |z| < 1.Using the fact that all singularities
of Fk(z) are included in the roots of q0,k(z) we can confirm that Fk(θ(z)) has the unique dominant
real singularity µk < 1, that satisfies θ(µk) = ρ2k for 2 ≤ k ≤ 9. Since θ′(µk) 6= 0, we know that

ik(s) = cks
−((k−1)2+(k−1)/2)(µ−1k )s.

qed.

4



We know that the generating function of the nuclei is given from:

Ck(z) = 1
r(z)z2−z+1Fk((

√
r(z)z

r(z)z2−z+1 )2), with r(z) = 1
1+z2 .

5.0.2 Theorem

For kεN, k ≥ 2, we have that: Ck(n) = ckn
−((k−1)2)+ (k−1)

2 )( 1
κk

)n, k = 3, 4, ..., 9, where κk is the only

positive real dominant singularity of Ck(z) and the smallest positive real solution of the equation√
r(x)x

r(x)x2−x+1 = ρ2k, for k = 3, 4, .., 9.

Proof: Prigsheim’s Theorem (Titchmarsh 1939) guarantees that Ck(z) has one positive real dominant sin-

gularity κk. We confirm that there exists a unique solution of w(x) = (

√
r(x)x

r(x)x2−x+1 )2 = ρ2k, for k = 3, 4, .., 9.

This solution is equal to κk, the thus unique, real dominant singularity of Ck(z). Also, since κk is strictly
less than the singularity of w(x), w′(κk) 6= 0, and w(x) is algebraic we derive:

Ck(n) = ckn
−((k−1)2)+ (k−1)

2 )( 1
κk

)n, for some ck > 0.
qed

6 Final Remarks

The results that were presented in the previous sections, become particularly interesting because they
showcase how we can use d-finite generating functions in order to study biological molecules and unveil
surprising connections in the evolution of RNA false nodes: many of them still awaiting to be explored.
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