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1 Snake Oil

The Snake Oil Method is a powerful techinuqe for evaluating combinatorial sums. There are
several steps involved:

• First identify the free variable, say n. Interpret the summand as a function of n, f(n).

• Construct a generating function F from f .

• Extract the coefficients of the generating function to find a closed form for f.

Problem 1. Prove that
∞∑
k=0

(
k

n− k

)
= Fn+1.

Proof. Suppose we let

f(n) =

∞∑
k=0

(
k

n− k

)
and

F (x) =

∞∑
n=0

xnf(n)

=
∞∑
n=0

∞∑
k=0

(
k

n− k

)
xn

=
∞∑
k=0

xk
2k∑
n=k

(
k

n− k

)
xn−k =

∞∑
k=0

xk
k∑

n=0

(
k

n

)
xn

=
∞∑
k=0

xk(1 + x)k =
∞∑
k=0

(x · (x + 1))k

=
1

1− x− x2
.

That is, F (x) is the generating function for the Fibonacci sequence. Hence, as desired, f(n) =
Fn+1. �

Problem 2. Prove that:

∞∑
k=0

(
n + k

2k

)
2n−k =

1

3
+

2

3
4n.

Proof. Let

f(n) =

∞∑
k=0

(
n + k

2k

)
2n−k

1



Euler Circle Maria Chrysafis December 6, 2021

and

F (x) =
∞∑
n=0

xnf(n)

=

∞∑
n=0

∞∑
k=0

(
n + k

2k

)
2n−kxn

=

∞∑
k=0

xk
∞∑
n=k

(
n + k

2k

)
(2x)n−k

=

∞∑
k=0

xk
∞∑
n=0

(
n + 2k

2k

)
(2x)n

Now, we need to evaluate:

g(a) =

∞∑
n=0

(
n + a

a

)
xn.

To do so, notice that:

g(a) · (1− x) =
∞∑
n=0

(
a + n− 1

n

)
xn

= g(a− 1).

Since g(0) = 1
1−x , it follows by induction that g(a) = 1

(1−x)a+1 .

Returning to the main problem, we have that:

F (x) =

∞∑
k=0

xk
∞∑
n=0

(
n + 2k

2k

)
(2x)n

=

∞∑
k=0

xk
(

1

1− 2x

)2k+1

=
∞∑
k=0

(
1

1− 2x

)(
x

(1− 2x)2

)k

=

(
1

1− 2x

)
·

(
1

1− x
(1−2x)2

)
=

1− 2x

4x2 − 5x + 1

=
1

3
· 1

1− x
+

2

3
· 1

1− 4x

=

∞∑
n=0

1

3
xn +

2

3
(4x)n,

from which it follows that

f(n) =
1

3
+

2

3
· 4n,

as per the desired. �
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Problem 3. Show that:
n∑

k=0

(
2n

2k

)(
2k

k

)
22n−2k =

(
4n

2n

)
.

Proof. Let

f(n) =
n∑

k=0

(
2n

2k

)(
2k

k

)
22n−2k.

Then:

F (x) =
∞∑
n=0

f(n)xn

=
∞∑
n=0

n∑
k=0

(
2n

2k

)(
2k

k

)
22n−2kxn

=
n∑

k=0

2−2k
(

2k

k

) ∞∑
n=k

(
2n

2k

)(
2
√
x
)2n

.

To evaluate the inner summand, we notice that:

∞∑
n=k

(
2n

2k

)(
2
√
x
)2n

=
1

2

∞∑
n=k

(
n

k

)(
−2
√
x
)n

+
1

2

∞∑
n=k

(
n

k

)(
2
√
x
)n

,

which as we can recall from a previous problem evaluates to:

1

2

(
2
√
x
)2k ·( 1

(1− 2
√
x)

2k+1
+

1

(1 + 2
√
x)

2k+1

)
.

Plugging this in, we see that:

F (x) =

n∑
k=0

1

2
·
(
2
√
x
)2k · 2−2k(2k

k

)(
1

(1− 2
√
x)

2k+1
+

1

(1 + 2
√
x)

2k+1

)

=
1

(1− 2
√
x)

∑
k

(
2k

k

)(
x

(1− 2
√
x)

)k

+
1

(1 + 2
√
x)

∑
k

(
2k

k

)(
x

(1 + 2
√
x)

)k

=
1

2(1− 2
√
x)
· 1√

1− 4x
(1−2

√
x)2

+
1

2(1 + 2
√
x)
· 1√

1− 4x
(1+2

√
x)2

=
1

2

(
1√

1− 4
√
x

+
1√

1 + 4
√
x

)
.
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We’d like F (x) =
∑(

4n
2n

)
xn. To show that this is indeed the case, note that:

G(x) =

∞∑
n=0

(
4n

2n

)
xn

=
1

2

∞∑
n=0

(
2n

n

)
xn +

1

2

∞∑
n=0

(
2n

n

)
(−x)n

=
1

2

(
1√

1− 4
√
x

+
1√

1 + 4
√
x

)
= F (x),

from which the desired follows. �

Problem 4. Prove that: ∑
k

(
n + k

m + 2k

)(
2k

k

)
(−1)k

k + 1
=

(
n− 1

m− 1

)
.

Proof. Let

f(n) =
∑
k

(
n + k

m + 2k

)(
2k

k

)
(−1)k

k + 1
.

We could also consider letting our free variable be m, but n seems more natural because it only
appears once in the summand. As such:

F (x) =
∞∑
n=0

f(n)xn

=
∑
n

∑
k

(
n + k

m + 2k

)(
2k

k

)
(−1)k

k + 1
xn

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

∑
n

(
n + k

m + 2k

)
xn+k.

Seeking to evaluate the inner summand, let

g(x,m) =
∑
n

(
n + k

m + 2k

)
xn+k

=⇒ xg(x,m) =
∑
n

(
n + k − 1

m + 2k

)
xn+k

=⇒ (1− x)g(x,m) =
∑
n

(
n + k

m + 2k − 1

)
xn+k+1 = xg(x,m− 1).

And so, by induction, we see that:

g(x,m) =
xm+2k

(1− x)m+2k+1
.
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Plugging this back in, we see that:

F (x) =
∑
k

(
2k

k

)
(−1)k

(k + 1)
x−k

xm+2k

(1− x)m+2k+1

=
xm

(1− x)m+1

∑
k

(
2k

k

)
1

(k + 1)

(−x)k

(1− x)2k

To evaluate the inner summand, notice that

A(x) =
∑
k

(
2k

k

)
1

k + 1
xk

=⇒ xA′(x) =
∑
k

(
2k

k

)
k

k + 1
xk

=⇒ A(x) + xA′(x) =
∑
k

(
2k

k

)
xk

=⇒ A(x) + xA′(x) =
1√

1− 4x
.

This is a first order differential equation, and it can be solved using elementary methods. With
steps ommitted, we see that:

A(x) =

√
1− 4x

2x
− 1

2x
.

Hence,

F (x) =
∑
k

xm−1

2(1− x)m−1
·

(
1−

√
1 +

4x

(1− x)2

)

=
xm

(1− x)m
.

We notice that F (x) is the generating function of the sequence
(
n−1
m−1

)
, from which the desired

follows. �
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