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1 Introduction

We are interested in a technique guaranteeing a useful extraction of the main
diagonal of a bivariate generating function. That is, given a generating function
F (s, t) =

∑
i,j≥0 fi,js

itj , we wish to find a method to calculate

diag F =
∑
n≥0

fn,nx
n.

Such an extraction proves useful for counting lattice paths along the y = x
diagonal. We’ll find that our proofs of the following theorem will conveniently
provide a technique useful for the calculation of diag F as well as provide a
useful condition on the simplicity of the result.

Theorem 1. Let K be an algebraically closed field of characteristic zero, and
let F (s, t) be a rational function and a Laurent series over K. Then diag F is
algebraic.

The proof and technique presented here will forgo the use of complex anal-
ysis altogether and transform F into an appropriate Puiseux series. We will
demonstrate the technique on two illustrative examples. The first will be the
case of the number of North-East lattice paths along the plane diagonal, using
steps of (0, 1) and (1, 0). The second will count the central Delannoy numbers,
the number of lattice paths along the plane diagonal using steps of (0, 1), (1, 0),
and (1, 1).

2 Puiseux series proof

We first introduce some useful terminology.

Definition 1. Let K be an algebraically closed field. Then K[x] is the set of
(finite) polynomials over K, K[[x]] is the set of power series over K, and K((x))
is the set of Laurent series over K,
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Note that in the context of lattice paths especially, we simply let K = C.

Definition 2. A fractional Laurent series or a Puiseux series in x is a series
of the form ∑

n∈Z
anx

n/D

where D ∈ Z+. In other words, a Puiseux series generalizes a power series to
include negative and fractional exponents with a bounded denominator. For a
field K, we denote Kfra((x)) as the field of Puiseux series on x over K (i.e.
whose coefficients an lie in K).

We now state Puiseux’s theorem.

Theorem 2. Puiseux’s Theorem: Let K be an algebraically closed field of char-
acteristic zero (such as C). Then Kfra((x)) is algebraically closed.

In other words, all solutions to a polynomial whose coefficients are Puiseux
series over a certain field are themselves Puiseux series over the same field.

We can now prove Theorem 1.

Proof. Suppose F (s, t) is a rational function represented by Laurent series∑
ns,nt∈Z fm,ns

mtn such that fm,n ∈ K for all m and n. Let G(x, s) = F (s, x
s ).

We then have the exponent of x = st marking a position along the diagonal
and the exponent of s now marking the s-displacement away from the diagonal;
thus, we see that [s0]G(x, s) = diag F .

Since F is a rational function in s and t, it follows that G is also rational and
therefore can be expressed as G = P/Q where P and Q are polynomials over K

in s and x. We then factor Q(x, s) as k
∏l

i=1 (s− ξi(x))
ei for some k ∈ K with

ei ∈ Z+ for all 1 ≤ i ≤ l. By Puiseux’s theorem, we have

ξi(x) ∈ K((x1/r)) ⊂ Kfra((x))

for some r ∈ Z+. We then split G into partial fractions:

G(x, s) =
P (x, s)

Q(x, s)
=

P (x, s)

C
∏l

i=1 (s− ξi(x))
ei

=

l∑
i=1

Ni(x, s)

(s− ξi(x))ei
.

To transform G into a recognizable Laurent series in x and s, we partition
ξi(x) into two groups, αi(x) for 1 ≤ i ≤ m and βj(x) for 1 ≤ j ≤ n such that
the terms αi(x) consist of series with strictly positive exponents and the terms
βj(x) consist of the remaining roots that each have at least one non-positive
exponent. Partitioning ξi(x) thusly, we have

G(x, s) =

m∑
i=1

ai(s)

(s− αi(x))ci
+

n∑
j=1

bj(s)

(s− βj(x))dj
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Consider the first summand. Note that αi(x) ∈ K[[x1/r]]. The first sum-
mand can be rewritten as

Ai(s)

(1− αi(x)s−1)ci

where Ai(s) = sciai(s) ∈ K((x1/r))[s−1, s].
Consider the second summand. Note that while βj(x) /∈ K[[x1/r]], we have

βj(x)
−1 ∈ K[[x1/r]. The second summand can therefore be rewritten as

Bj(s)

(1− sβj(x)−1)di

where Bj(s) = β
−dj

j bj(s) ∈ K((x1/r))[s−1, s].
Thus we have

G(x, s) =

m∑
i=0

Ai(s)

(1− s−1αi(x))
ci +

n∑
j=0

Bj(s)

(1− sβj(x)−1)
dj

and, expanding,

G(x, s) =

m∑
i=0

Ai(s)
∑
k≥0

(
ci
k

)
(−1)ks−kαi(x)

k+

n∑
j=0

Bj(s)
∑
k≥0

(
dj
k

)
(−1)kskβi(x)

−k

From this expansion we can see that since Ai(s), Bj(s) ∈ K((x1/r))[s, s−1]
and αi(x), βj(x)

−1 ∈ K[[x1/r]], we have

G(x, s) ∈ K[[x]]((s)) = K[[s, x/s]]

as necessary. Thus all manipulations have kept the expression in the appropriate
ring.

We can now extract the diagonal as diag F = [s0]G(x, s), resulting in a sum
of terms of the form γ(x)α(x)a and δ(x)β(x)−b where a, b ∈ Z+, γ(x) and δ(x)
are algebraic and α(x) and β(x)−1 are algebraic. Thus diag F is algebraic.

3 Application of Puiseux series method

We now demonstrate the Puiseux series method for calculating the central di-
agonal on objects for which the diagonal appears naturally: two-dimensional
plane lattice paths.

3.1 Puiseux series method for diagonal of North-East lat-
tice paths

The number of North-East lattice paths to (i, j), consisting of steps (0, 1) and
(1, 0), is generated by F (s, t) = 1

1−s−t . We let G(x, s) = F
(
s, x

s

)
, obtaining
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G(x, s) =
1

1− s− x/s
=

−s

s2 − s+ x
=

P (x, s)

Q(x, s)
.

Factoring Q(x, s) by s, we have Q(x, s) = (s − ξ−(x))(s − ξ+(x)) where
ξ−(x) =

1
2

(
1−

√
1− 4x

)
and ξ+(x) =

1
2

(
1 +

√
1− 4x

)
.

By expanding, we see that ξ− contains only positive powers of s and can
therefore be appropriately relabeled α while ξ+ contains a non-negative power
of s and therefore can be appropriately relabeled β. Thus, expanding G into
partial fractions accordingly, we have

G(x, s) =
−s

(s− α)(s− β)
=

α
β−α

s− α
−

β
β−α

s− β
=

α
β−αs

−1

1− αs−1
+

1
β−α

1− β−1s

and thus

diag F = [s0]G(x, s) =
1

β − α
=

1√
1− 4x

.

Of course, this result is somewhat evident: we could easily note that

diag F =
∑
n≥0

(
2n

n

)
xn,

which would lead to the same generating function. We proceed with a case for
which direct calculation of the diagonal may be less obvious.

3.2 Puiseux series method for central Delannoy numbers

It can easily be found that number of Delannoy paths paths to (i, j), consisting
of steps (0, 1), (1, 0) and (1, 1) is generated by F (s, t) = 1

1−s−t−st . The same
approach can be applied. We include the computation for sake of illustration.
As before, we let G(x, s) = F

(
s, x

s

)
,, obtaining

G(x, s) =
1

1− s− x/s− x
=

−s

s2 + s(x− 1) + x
=

P (x, s)

Q(x, s)
.

Factoring Q(x, s) by s, we similarly have Q(x, s) = (s − ξ−(x))(s − ξ+(x))
where ξ−(x) =

1
2

(
(1− x)−

√
1− 6x+ x2

)
and ξ+(x) =

1
2

(
(1− x) +

√
1− 6x+ x2

)
.

By the same logic as before, we have

diag F =
1

ξ+ − ξ−
=

1√
1− 6x+ x2

.
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