
AN INTRODUCTION TO FINITE AUTOMATA

ARPIT MITTAL

Abstract. We discuss finite automata and their applications to the theory of generating
functions. We also prove results related to finite automata such as the pumping lemma.
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1. Machines

At its core, an automaton is a machine. The machine has states, and moves between them
based on the input it receives. Suppose we have a light bulb. The light bulb can either be
on or off. Thus, the light bulb has two states, on and off. The light bulb can turn on and
off based on the direction of how the light switch is pulled. If the light bulb is on, and the
switch is pulled up, the light bulb will remain to be on. On the contrary, if the light switch
was pulled down, the bulb would be off. We can create a state diagram for the light bulb as
follows.

OFF ON

DOWN
UP

DOWN

UP

Figure 1

In the state diagram of an automata, the arrows between states are called transitions. In
this state diagram, the directions “ON” and “OFF” refer to the direction of how the switch
is pulled. For this to be a proper state diagram, it would need to have a start state. That
is the state where the machine begins. Lets suppose that the bulb is off at the beginning,
and only changes brightness if we tamper with the switch. An automata also needs accept
states. The purpose of accept states is to determine whether a certain input is valid or not.
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2 ARPIT MITTAL

An input is only valid if the machine is at an accept state after the input is read. Say we
want the light bulb to be on in the end. Then, we have the following state diagram.

OFFstart ON

DOWN
UP

DOWN

UP

Figure 2

In the state diagram of an automata, the starting state has an arrow pointing towards it
from the word “start” and the accepting states have a double circle wrapping them. Now
that we have a proper state diagram for our machine, we can test it out with inputs. Suppose
we get the input {UP, DOWN, DOWN, UP, UP, UP}. First, our machine is at OFF because
it is the start state. Then, after receiving the input UP, the machine is at the state ON.
After reading the next input, DOWN, the machine is back at the state OFF. We can keep
reading inputs, and end up at the state ON. Since the state ON is an accept state, the
machine accepts the input {UP, DOWN, DOWN, UP, UP, UP}.

2. Types of Finite Automata

The first type of a finite automaton is a Deterministic Finite Automaton (DFA).

Definition 2.1. A deterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), where

(1) Q is a finite set called the states,
(2) Σ is a finite set called the alphabet,
(3) δ : Q× Σ → Q is the transition function,
(4) q0 ∈ Q is the start state, and
(5) F ⊆ Q is the set of accept states.

The transition function δ takes in a 2-tuple consisting of a state and an element in the
alphabet, and returns a state.

Example 1
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q1start q2

q3 q4

2
0, 1

0

1, 2

0, 1, 2

0

1

2

Figure 3

The formal description for this automaton is ({q1, q2, q3, q4}, {0, 1, 2}, δ, q1, q4). The transi-
tion function δ is

0 1 2
q1 q2 q2 q1
q2 q1 q4 q4
q3 q3 q3 q3
q4 q1 q2 q3.

Suppose we get the input 0021212012. We start at q1 and travel between the states in the
following order: q1, q2, q1, q1, q2, q4, q2, q4, q1, q2, q4. As q4 is an accept state, the automaton
does accept the input 0021212012.

Definition 2.2. If A is the set of all strings that the machine M accepts, then A is the
language of machine M and L(M) = A. We say that M recognizes A.

Definition 2.3. A language is regular iff there exists a finite automaton that recognizes it.

Definition 2.4. A language is specification regular iff it has a specification in terms of the
sum, product, sequence, set, multiset, and cycle constructions.

In all of the automata we have seen so far, there has been an outwards arrow from each
state for each element in the alphabet. In other words, we always have a state to go to after
reading the next character of an input, regardless of the current state. This characteristic of
DFAs does not hold for a nondeterministic finite automaton (NFA). A NFA can have zero,
one, or many outwards arrows from a state for a single element in the alphabet!

q0start q1

1
0, 1

0

0

Figure 4
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Figure 4 is an example of a NFA because it has multiple outwards arrows from a state
containing the same element of the alphabet. Lets now see how an NFA computes. Suppose
we get the input 101. We start at q0 as it is the start state, and have 2 places to go after
reading the first 1. We create a copy to go to state q1 and remain at the state q0 in the
original machine. In our original machine, we go to q1 after reading the 0 in the input string.
In our copy, we create a copy of itself that goes to q0 and go to q1 in the original copy.
In our original machine, we read the 1. There is no outwards arrow from q1 with 1, so the
original machine dies. In our first copy, it has nowhere to go at after reading the 1 so it dies.
The second copy reads the 1 and creates a copy to go to q1 while staying at q0 itself. Since
we have finished reading the input, and one of the copies is at an accept state, the NFA in
Figure 4 accepts the input 101.

In general, when a NFA has multiple states to go to after reading an input, it creates
copies of itself to go to each possible state. If there is nowhere to go after reading an input,
that copy dies and is forgotten about. The NFA accepts the input if at least one of the copies
ends in an accept state. NFAs have a special characteristic that makes them very powerful,
the epsilon arrow. When a NFA is at a state that has an epsilon arrow going out of it, the
NFA immediately creates a copy that follows the epsilon arrow. The NFA then carries out
its functions normally. Let’s look at an example.

q0start q1

1
0, 1

ϵ

Figure 5

Suppose this NFA receives the input 10. The automaton first makes a copy that goes to
q1 and remains at q0 in the original one. The original machine at q0 reads the 0 and goes to
q1. The copy sees that there is an epsilon arrow and makes a copy of itself to go to q0. The
original copy then reads the 0 and dies. The copy at q1 reads the 0 and goes to q1. Since two
of the copies ended at q1 the NFA accepts the string 10.

If we let the power set of a set Q be P(Q) and Σϵ be Σ ∪ {ϵ} for any alphabet Σ, we
can formally define NFAs as follows.

Definition 2.5. A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), where

(1) Q is a finite set called the states,
(2) Σ is a finite set called the alphabet,
(3) δ : Q× Σϵ → P(Q) is the transition function,
(4) q0 ∈ Q is the start state, and
(5) F ⊆ Q is the set of accept states.

Note that the codomain of δ is P(Q) rather than Q because a NFA can go to multiple
states in Q rather than a single state after reading an input.

Definition 2.6. Two automatons are equivalent if they recognize the same language.
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Proposition 2.7. There is an equivalent deterministic finite automaton for every nondeter-
ministic finite automaton.

Proof. Let the NFA N = (Q,Σ, δ, q0, F ) recognize the language A. We want to construct a
DFA M = (Q′,Σ, δ′, q′0, F

′) that also recognizes A. We will first ignore the epsilon arrows,
and take them into account later. To create a DFA that is equivalent to a given NFA we
need the DFA to keep track of all the possible states the NFA could be in at any time. Thus,
we have Q′ = P(Q). For R ∈ Q′ and a ∈ Σ, we can define

δ(R, a) =
⋃
r∈R

δ(r, a).

We thus must have q′0 = {q0} and F ′ = {R ∈ Q′|R contains an accept state of N}. Now, we
can take the possible epsilon arrows in N into account by defining for R ⊆ Q,

E(R) = {q ∈ Q|q can be reached by starting at R and traveling along one more epsilon arrows}.
We can use this new function to modify δ′ as follows:

δ(R, a) =
⋃
r∈R

E(δ(r, a)).

We can now change the start state of M to be q′0 = E(q0) which completes the proof. ■

Since we have shown that each NFA has an equivalent DFA, a very strong corollary can
be made.

Corollary 2.8. A language is regular iff it is recognized by a nondeterministic finite au-
tomaton.

3. Regular Operations

Definition 3.1. We can define the following regular operations for languages A and B as
follows:

(1) Union: A ∪B = {x | x ∈ A or x ∈ B},
(2) Concatenation: A ◦B = {xy | x ∈ A and y ∈ B},
(3) Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

Note that A∗ is the set of any number of elements of A concatenated. Because you can
concatenate 0 elements of A, it is always true that the empty string, ϵ ∈ A∗.

Lemma 3.2. If A and B are regular languages, A ∪B is a regular language.

Proof. Suppose the NFA N1 accepts A and the NFA N2 accepts B. We wish to construct a
NFA N that recognizes A ∪ B. The NFA N will accept an input if it is accepted by either
N1 or N2. We construct N to have a new start state, and draw epsilon arrows from the new
start state to the start states of N1 and N2. So when N is fed an input, it will go through
both N1 and N2 and will be accepted if it ends at an accept state of either N1 or N2.

Let N1 = (Q1,Σ1, δ1, q1, F1) and accept the language A. Let N2 = (Q2,Σ2, δ2, q2, F2) and
accept the language B. We construct an automaton N = (Q,Σ, δ, q0, F ) that recognizes
A ∪B.

(1) Q = {q0} ∪Q1 ∪Q2.
(2) Σ = Σ1 ∪ Σ2.
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(3) For any q ∈ Q and a ∈ Σϵ,

δ(q, a) =


δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

{q1, q2} if q = q0 and a = ϵ

∅ if q = q0 and a ̸= ϵ.

(4) F = F1 ∪ F2.

■

Example. If the automaton in Figure 4 recognizes the language A, and the automaton in
Figure 5 recognizes the language B, we would construct the following automaton to recognize
A ∪B.

q0start

q1 q2

q3 q4

ϵ

ϵ

1
0, 1

0

0

1
0, 1

ϵ

Figure 6

Lemma 3.3. If A and B are regular languages, A ◦B is a regular language.

Proof. Suppose the NFAs N1 and N2 each recognize the languages A and B respectively.
We wish to construct an automaton N which recognizes A ◦ B. To do this we design N to
first feed the input through N1 and then into N2. We can thus make the start state of N the
start state of N1 and the accepting states of N the accepting states of N2. However, we must
determine when to transfer the input from N1 to N2. For example, if the accepting states
of N1 each had transition arrows to some other states, and we drew a transition arrow from
each accept state of N1 to the start state of N2 labeled by each element in the alphabet,
it is possible that the input will leave N1 too early and will be rejected by N2. To solve
this problem, we draw an epsilon arrows from the accept states of N1 to the start state of
N2 soN will test all possible points of dividing the input into a piece forN1 and a piece forN2.

Let the NFAs N1 = (Q1,Σ1, δ1, q1, F1) and N2 = (Q2,Σ2, δ2, q2, F2) recognize the languages
A and B respectively. We construct an automaton N = (Q,Σ, δ, q1, F2) that accepts A ◦B.

(1) Q = Q1 ∪Q2.
(2) Σ = Σ1 ∪ Σ2.
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(3) For any q ∈ Q and a ∈ Σϵ,

δ(q, a) =


δ1(q, a) if q ∈ Q1 and q ̸∈ F1

δ1(q, a) if q ∈ F1 and a ̸= ϵ

{q2} ∪ δ1(q, a) if q ∈ F1 and a = ϵ

δ2(q, a) if q ∈ Q2.

■

Example. If the automaton in Figure 4 recognizes the language A, and the automaton in
Figure 5 recognizes the language B, we would construct the following automaton to recognize
A ◦B.

q0start q1 q2 q3

1
0, 1

0

0

ϵ

1
0, 1

ϵ

Figure 7

Lemma 3.4. If A is a regular language, A∗ is a regular language.

Proof Idea. Suppose the NFA N1 recognizes the language A. We wish to construct the NFA
N that recognizes A∗. We construct N in a very similar way to how we constructed N in
lemma 3.3. We must draw an epsilon arrow from each accept state of A to the start state
of N1 when we construct N. Since ϵ ∈ A∗, we must create a new start state that is also an
accept state and draw an epsilon arrow from that state to the original start state. We do
this so ϵ will be accepted by N.

Let the NFA N1 = (Q1,Σ, δ1, q1, F1) recognize the language A. We construct an automa-
ton N = (Q,Σ, δ, q0, F ) that recognizes A∗.

(1) Q = {q0} ∪Q.
(2) For any q ∈ Q and a ∈ Σϵ,

δ(q, a) =



δ1(q, a) if q ∈ Q1 and q ̸∈ F1

δ1(q, a) if q ∈ F1 and a ̸= ϵ

δ1(q, a) ∪ {q1} if q ∈ F1 and a = ϵ

{q1} if q = q0 and a = ϵ

∅ q = q0 and a ̸= ϵ.

(3) F = {q1} ∪ F1.

■

Example. If the automaton in Figure 4 recognizes the language A, we would construct the
following automaton to recognize A∗.
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q0start q1 q2

ϵ

1
0, 1

0, ϵ

0

Figure 8

Theorem 3.5. All three regular operations are closed on regular languages.

Proof. This result follows from the previous lemmas. ■

4. Generating Functions

Theorem 4.1 (Kleene-Rabin-Scott). A language is specification regular iff there is some
automaton that recognizes the language.

We can also extract a generating function from a DFA.

Theorem 4.2. Suppose that M is a deterministic finite automaton with a set of states
Q, start state q0, and accepting states F ⊆ Q. The generating function of A = L(M) is
determined under matrix form as

A(z) = u(I − zT )−1v.

In this theorem, I is the identity matrix and the transition function T is defined as

Tj,k = #{x ∈ Σ such that an edge (qj, qk) is labeled by x}.
u is the row vector (1, 0, . . . , 0) and v is the column vector (v0, . . . , vs)

t such that vj = [[vj ∈
F ]]. For predicate P, [[P ]] is defined to be 1 if P is true, and 0 otherwise.

We can go through an example from [FS09] of extracting an ordinary generating function
from a deterministic finite automaton.

Example. Suppose we have a deterministic finite automaton with Σ = {a, b} that recognizes
words with the pattern abb. The state diagram for that automaton is as follows.

q0start q1 q2 q3

b

a

a

b

a

b

a, b

Figure 9

If we define Lj be the set of accepted words when starting at the state qj, we have

L0 = aL1 + bL0

L1 = aL1 + bL2

L2 = aL1 + bL3

L3 = aL3 + bL3 + ϵ.
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We can use this system of equations to obtain a system of equations for the ordinary gener-
ating functions.

L0 = zL1 + zL0

L1 = zL1 + zL2

L2 = zL1 + zL3

L3 = zL3 + zL3 + 1.

We can solve this equation for

L0(z) =
z3

(1− z)(1− 2z)(1− z − z2)
.

We take the partial fraction decomposition from which we obtain

L0,n = 2n − fn+3 + 1,

where fn is the nth Fibonacci number. It is also possible to avoid doing all of this work and
just directly find the specification for the language. We can get the specification

L0
∼= Seq(b)× a× Seq(a)× b× Seq(a× Seq(a)× b)× b× Seq(a+ b)

from which we can obtain the same generating function. We get this specification by ob-
serving how to get to state qi from state qi−1. Going back to our expression for L0(z), we
can see how it is directly reflected in the visual state diagram. The state q0 has a single self
loop which is where the (1 − z) in the denominator of L0(z) comes from. The state q3 has
two single loops from which the (1− z − z) comes from. The state q1 has a single loop of a,
and a double loop of going to q2 and back to q1 which gives the (1− z − z2).

5. The Pumping Lemma

The pumping lemma gives a quality of all regular languages.

Lemma 5.1 (Pumping Lemma). If A is a regular language, there exists a number p (the
pumping length) where if s is a string in A with length at least p, it can be divided into 3
pieces s = xyz, where

(1) for each i ≥ 0, xyiz ∈ A,
(2) |y| > 0, and
(3) |xy| ≤ p.

To prove this lemma, we will need to use the pigeonhole principle. The pigeonhole principle
states that if there are n pigeons and m < n holes, there will be at least one hole with more
than one pigeon.

Proof. Let M be the deterministic finite automaton (Q,Σ, δ, q1, F ) recognizing the language
A. Let p = |Q|. Now, we can let s = s1s2s3 . . . sn be a string in A and r1, r2, . . . , rn+1 be the
sequence of states M goes through while reading s where n ≥ p. Note that the sequence of
states has length n + 1 rather than n because there is a start state, and then a state after
each si. Since n+1 ≥ p+1 > p, two states among the first p+1 states in the sequence must
be the same. We label the first equivalent state as rj and the second as rk. We then break
up s into xyz where

(1) x = s1, . . . , sj−1,
(2) y = sj, . . . , sk−1, and
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(3) z = sk, . . . , sn.

Because x takes the automaton from the state r1 to rj, y takes the automaton from rj to
rk = rj, and z takes the automaton from rk to rn+1, condition 1 of the Pumping Lemma is
satisfied. Condition 2 is trivial as k ̸= j which means that the smallest |y| can be is 1 in the
case of a self loop (k = j + 1). Condition 3 follows from the fact that k ≤ p + 1. Thus, the
proof is complete. ■

The pumping lemma can be used to prove that a language is non-regular by using a proof
by contradiction. We can assume that the language is regular, and then show that there is
no p for the conditions of the pumping lemma to be met. We can go through an example
from [Sip12] to illustrate this method.

Example. Let A be the language A = {0n1n|n ≥ 0}. Assume for the sake of contradiction
that A is regular. Let p be the pumping length of A. Since s = 0p1p is a string in A that has
a longer length than p, it must be able to break down into xyz where xyiz ∈ A for all i ≥ 0.
We have three possibilities for y, so we must show that each possibility results in a violation
of the condition.

(1) Case 1: The first possibility for y is that it consists of only zeroes. Thus, xyiz for
some i ≥ 1 would have more zeroes than ones, meaning that it is not in A, violating
the first clause of the pumping lemma.

(2) Case 2: The second possibility for y is that it consists of only ones. Similar to the
first case, this would contradict clause 1 of the pumping lemma as xyiz would have
more ones than zeroes.

(3) Case 3: The third possibility for y is that it consists of both zeroes and ones. In this
case, xyiz would have the same number of zeroes as ones, but the zeroes and ones
will be out of order and not all zeroes would be before the ones. Thus, xyiz is not a
member of A which contradicts the first clause of the pumping lemma.

Since the pumping lemma does not hold on this language, this language is not regular.
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