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Abstract. The cyclic sieving phenomenon is an intriguing idea that has ap-
peared in many combinatorial contexts, such as promotions and the Young

Tableaux, pattern-avoiding permutations, and circular Dyck paths. In this

paper, we will investigate what the CSP (short for cyclic sieving phenomenon)
is and some interesting applications of it.

1. Introduction

Let’s say we have a set X, a finite cyclic group C acting on X, and a polynomial
f(q) in q with nonnegative integer coefficients.

Definition 1.1 (The Cyclic Sieving Phenomenon). The triple (X,C, f(q)) is said
to exhibit the cyclic sieving phenomenon if

#Xg = f(ωo(g))

where # represents cardinality, Xg is the fixed point set of g, and ωo(g) is a primitive
o(g)th root of unity (o(g) denotes the order of g).

At first glance, it may not be immediately clear how plugging a complex number
into a polynomial would have any combinatorial meaning. However, it is ubiquitous
in many contexts, as we will be seeing in this paper.

As Reiner eloquently states in [wVR], some elements in the set are asymmetric,
some have two-fold or three-fold symmetry. Then, plugging in a primitive root
of unity of order d would give us a count of how many elements had a d-fold
symmetry. Thus, in a sense, the polynomial f(q) is storing information about the
cyclic symmetry and orbit structure in this action on this set.

The precursor to the cyclic sieving phenomenon was J. Stembridge’s ”q = −1
phenomenon” [Ste94] which was a special case of the CSP for involutions:

Definition 1.2 (The q = −1 phenomenon). Suppose we have finite set of combi-
natorial objects X and an associated generating function F (q) (with nonnegative
integer coefficients). Furthermore, suppose we have an involution c on X. Then,
this setting would exhibit the q = −1 phenomenon if F (1) would be equal to the
number of elements in X and F (−1) would be equal to the number of fixed points
in X under c. In other words, if

F (1) = #X and F (−1) = #Xc.
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2. Investigating a CSP Triple

Let’s look at a triple that exhibits the CSP. For some positive integer n, let

X =
((

[n]
k

))
, the set of multisets of [n]. Now, consider the group G = ⟨(1, 2, . . . , n)⟩.

We let G act on elements of X by the following definition:

Definition 2.1. Let g ∈ G and M ∈ X such that M = {a1, a2, a3, . . . , ak} where
a1 ≤ a2 ≤ · · · ≤ ak. Then,

g(M) = {g(a1), g(a2), . . . g(ak)}.

For example, let’s look at the case where n = 3 and k = 2. Then,

X = {{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}}.

Also, we have

G = {e, (1, 2, 3), (1, 3, 2)}
where e is the identity transformation. Let’s say g = (1, 2, 3), i.e. g(1) = 2,
g(2) = 3, and g(3) = 1. Then, we have

g(X) = (1, 2, 3)(X) = {g({1, 1}), g({1, 2}), g({1, 3}),
g({2, 2}), g({2, 3}), g({3, 3})

= {{2, 2}, {2, 3}, {2, 1},
{3, 3}, {3, 1}, {1, 1}}.

Now, the last ingredient we need is to define a function f . For this, we are going
to use q-analogs:

Definition 2.2. The q-analog of a positive integer m is

[m]q = 1 + q + q2 + q3 + · · ·+ qm−1.

Furthermore, let the q-analog of m! be

[m]!q = [m]q[m− 1]q · · · [2]q[1]q.

Finally, define the q-analog of the binomial coefficient
(
m
j

)
to be[

m

k

]
q

=
[m]!q

[k]!q[m− k]!q
.

Remark 2.1. The formula for the q-analog of [m]q is motivated by the fact that

lim
q→1

1− qm

1− q
= m

for any positive integer m [ALP19].

We have the following theorem by Reiner, Stanton, and White [RSW14]:

Theorem 1 (Reiner-Stanton-White). The triple(((
[n]

k

))
, ⟨(1, 2, . . . , n)⟩,

[
n+ k − 1

k

]
q

)
exhibits the CSP.

To prove this theorem, we will use the proof displayed by Bruce Sagan in [Sag10]:



THE CYCLIC SIEVING PHENOMENON AND APPLICATIONS 3

Proof. First off, we will start out by proving the following lemma, which will later
help us understand what is going on on the right-hand side of the equation:

Lemma 2.1. For positive integers m and n such that m ≡ n (mod d),

lim
q→ω

[m]q
[n]q

=

{
m
n , for m ≡ n ≡ 0 (mod d)
1, otherwise

}
where ω is a root of unity with order d.

To prove this lemma, we start out by letting m ≡ n ≡ r (mod d) where 0 ≤ r <
d. Then, we have

[m]ω = 1 + ω + ω2 + · · ·+ ωm−1

= (1 + ω + · · ·+ ωd−1) + · · ·+ (1 + ω + · · ·+ ωd−1) + (1 + ω + · · ·+ ωr−1)

= 1 + ω + · · ·+ ωr−1

since 1+ω+· · ·+ωd−1 = 0. Therefore, we also have [n]ω = [m]ω = 1+ω+· · ·+ωr−1.

If n ̸≡ 0 (mod d), then [n]ω ̸= 0. Thus, [m]ω
[n]ω

= 1.

Now, if n ≡ 0 (mod d), then [n]ω = 0. In this case, let m = jd and n = kd.
Then, we have

[m]q
[n]q

=
1 + q + q2 + · · ·+ qjd−1

1 + q + q2 + · · ·+ qkd−1

=
(1 + q + · · ·+ qd−1) + · · ·+ (1 + q + · · ·+ qd−1) + (1 + q + · · ·+ qr−1)

(1 + q + · · ·+ qd−1) + · · ·+ (1 + q + · · ·+ qd−1) + (1 + q + · · ·+ qr−1)

=
(1 + q + · · ·+ qd−1)(1 + qd + q2d + · · ·+ q(j−1)d)

(1 + q + · · ·+ qd−1)(1 + qd + q2d + · · ·+ q(k−1)d)

=
1 + qd + q2d + · · ·+ q(j−1)d

1 + qd + q2d + · · ·+ q(k−1)d
.

Taking the limit as q approaches ω and using the fact that ωd = 1, we have

lim
q→ω

[m]q
[n]q

= lim
q→ω

1 + q + q2 + · · ·+ qjd−1

1 + q + q2 + · · ·+ qkd−1

=
1 + ωd + ω2d + · · ·+ ω(j−1)d

1 + ωd + ω2d + · · ·+ ω(k−1)d

=
j

k
=

m

n
.

Now, we propose the following equality regarding the right-hand side of the CSP
condition:

Proposition 2.1. Let n, d, and k be positive integers such that d|n. Then,

lim
q→ω

[
n+ k − 1

k

]
q

=

{ (
n/d+k/d−1

k/d

)
, for d|k

0, otherwise

}
The proof for this proposition revolves around noticing the following: since d|n,

the number of factors equal to zero in the numerator of the expression when q = ω,
which is [n]ω[n+ 1]ω[n+ 2]ω · · · [n+ k− 1]ω, is always greater than or equal to the
number of zeros in the denominator, which is [k]ω[k − 1]ω · · · [2]ω[1]ω. Equality is
achieved if and only if d|k. This proves the else case.
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If d|k, then

lim
q→ω

[
n+ k − 1

k

]
ω

= lim
q→ω

(
[n]q
[k]q

[n+ 1]q
[1]q

[n+ 2]q
[2]q

· · · [n+ k − 1]q
[k − 1]q

)
=

n

k
· 1 · · · 1 · n+ d

d
· 1 · · · 1 · n+ 2d

2d
· · · n+ k − d

k − d
· 1 · · ·

=
n/d

k/d

n/d+ 1

1

n/d+ 2

2
· · · (n+ k)/d− 1

k/d− 1

=

(
(n+ k)/d− 1

k/d

)
where the second equality comes from application of Lemma 3.1.

Now, we understand what happens on the right-hand side of the equation when
we plug in our root of unity ω. Let’s take a look at what happens at the left-hand
side:

Proposition 2.2. Let M =
((

[n]
k

))
, and let o(g) = d. Then,

#Mg =

{ (
n/d+k/d−1

k/d

)
, if d|k

0, otherwise

}
Let’s consider a simple case for our proof: g = (1, 2, . . . , n)n/d. Then, the proof

for other possible g only requires slight modification from the current one, thus we
leave that as an exercise to the reader.

Considering the cycle decomposition of g, we have

g = (1, 1 +
n

d
, 1 + 2

n

d
, · · · )(2, 2 + n

d
, 2 + 2

n

d
, · · · ) · · · (n, n+

n

d
, n+ 2

n

d
, · · · ).

Let g1 denote the set of elements in first cycle, g2 denote the set of elements in the
second cycle, g3 the set of elements in the third cycle, etc. Now, notice that for any
X ∈ M , X is a fixed point if and only if we can express it as

X = gi1 ⊎ gi2 ⊎ · · ·

for some positive integers i1, i2, . . ., where ⊎ denotes the multiset sum of two sets.
In other words, X is the mulstiset sum of some (and possibly all) of these cycles.

Consider if X = g1 ⊎ g2 ⊎ · · · . Then, gX would simply be g acting on a bunch of
cycles, which would shift over each element in every cycle over. In other words, we
are just rearranging the elements within the same cycle, but the elements themselves
are staying the same. Thus, gX = X.

Conversely, let’s say we started out with gX = X. Consider a specific element,
for example j ∈ X. Then, we know that j + n/d ∈ X. However, if this is the case,
then j + 2n/d ∈ X as well. Continuing this process, we see that all elements in
that cycle are also in X.

Now, remember that the order of g is d, therefore each of the cycles must have d
elements. Consequently, if d does not divide k, then the multiset cannot be written
in the form above, which implies that #Mg = 0 since it has no fixed points subsets.

However, if we do have d|k, then we need exactly k
d cycles to cover all of the

elements. Since we have n
d total cycles to choose from (with repetition), we have

#Mg =

((
n/d

k/d

))
,
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Figure 1. Ferrers diagram for the partition (5, 4, 3, 1).

which is equal to (
n/d+ k/d− 1

k/d

)
.

Therefore, we have shown that both the left-hand side and right-hand side of the
equation are counting the same quantity, completing the proof.

□

3. Applications

In the applications section, we will be going over how CSP applies to Young
Tableaux, Pattern-Avoiding Permutations, and Circular Dyck Paths.

3.1. Cyclic Sieving in the Young Tableaux.

In his paper titled “Cyclic sieving, promotion, and representation theory,” B.
Rhoades [Rho10] provides another cyclic sieving triple about regular Young Tableaux
under the action of promotion. Before we continue, let us review some definitions.

A partition λ of n is a sequence λ = (λ1, λ2, . . . , λk) of k non-increasing positive
integers such that

∑
i λi = n. We denote this as λ ⊢ n, and λi are the parts of λ.

For example, (5, 4, 3, 1) is a partition of 13 with parts 5, 4, 3, and 1.
Given a partition λ of n, its Ferrers diagram is a way to represent the partition

in which we place λi dots in row λi. For example, the partition (5, 4, 3, 1) has the
corresponding Ferrers diagram shown in Figure 1.

We say λ is a regular partition if it can be expressed in the form of λ =
(n, n, . . . , n) = (nm), i.e. a partition of a number into m parts, each of size n.
Note that regular partitions have rectangular-shaped Ferrers diagrams.

Now, define the standard Young tableaux of shape λ to be a function T : λ → [n]
such that Ti,j < Ti,j+1 and Ti,j < Ti+1,j where Tx,y is used to represent the element
in the xth row and yth column. We let Syt(λ) denote all of the standard Young
tableaux of shape λ, and define

Sytn =
⋃
λ⊢n

Syt(λ).

For instance, the possible standard Young tableaux for the partition λ = (3, 2) of
5 are

Syt((3, 2)) =

 1 2 3

4 5
, 1 2 4

3 5
, 1 2 5

3 4
, 1 3 4

2 5
, 1 3 5

2 4


So #Syt((3, 2)) = 5. If λ is a regular partition, then its standard Young tableaux
are also regular Young tableaux.
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Furthermore, we define

fλ = #Syt(λ).

Recall that a cyclic sieving triple must include a set, a polynomial, and a group
acting on that set. So far, we have found the set that Rhoades uses in his theorem:
Syt(λ). To find the desired polynomial, we look to the concept of hooklength as is
introduced by J. S. Frame, G. de B. Robinson, and R. M. Thrall [FRT54].

We define the hook of (i, j) in the Young tableaux to be

Hi,j = {(i, j′) ∈ λ : j′ ≥ j} ∪ {(i′, j) ∈ λ : i′ ≥ i}
and its corresponding hooklength to be

hi,j = #Hi,j .

The fascinating result discovered by Frame, Robinson, and Thrall that comes
out of this is called the Hooklength Formula:

Theorem 2 (Frame-Robinson-Thrall). For a partition λ ⊢ n, we have

fλ =
n!∏

(i,j)∈λ

hi,j
.

Thus, the polynomial that appears in Rhoades’ cyclic sieving triple is the q-
analog of the Hooklength Formula:

fλ(q) =
[n]!q∏

(i,j)∈λ

[hi,j ]q
.

The last thing we need now is the group action on Syt(λ): the perfect candidate
for this is using Schützenberger’s promotion operator [Sch72]. First, define (i, j) ∈ λ
to be a corner if (i, j + 1) ̸∈ λ and (i + 1, j) ̸∈ λ. Now, for a T ∈ Syt(λ), define
the promotion ∂T of T via the following algorithm:

(1) Replace T1,1 with a dot.
(2) If the dot is at (i, j), then swap it with the value at Ti+1,j or Tj+1,i,

whichever one is smaller. If only one of them is in T , then swap it with
that one. Repeat this step until the dot is at a corner.

(3) Subtract 1 from every element in the array, and replace the dot in the
corner with the value n. This gives us ∂T .

For example, to get the promotion of
1 2 4
3 5 , we would follow this sequence of steps:

1 2 4

3 5
→ · 2 4

3 5
→ 2 · 4

3 5
→ 2 4 ·

3 5
→ 1 3 ·

2 4
→ 1 3 5

2 4

Note that the second step simply shifts the elements of the tableaux, so it main-
tains the property that the elements are in increasing order from left-to-right and
from top-to-bottom. Therefore, ∂T ∈ Syt(λ). Additionally, it is not difficult to see
that this algorithm is reversible at every step, therefore ∂ is a bijection on Syt(λ)
(we encourage the reader to pick a λ, then pick a few T ∈ Syt(λ) and show that
∂T is a bijection). Therefore, the promotion operator generates a group ⟨∂⟩ acting
on Young tableaux of a given shape.
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Though mapping out the action in general seems challenging, it is easier to
describe the action for some special shapes. The following theorem is by M. D.
Haiman [Hai92], which shows that ⟨∂⟩ is cyclic when acting on regular Young
tableaux:

Theorem 3 (Haiman). If λ = (n, n, . . . , n) = (nm) (a partition of mn into m equal
parts of size n), then

∂mnT = T

for all T ∈ Syt(λ).

In fact, Sagan [Sag10] provides the cycle decomposition for ∂ via its action on
λ =

(
32
)
.

However, the main result we get from Rhoades’ paper is the following:

Theorem 4 (Rhoades). If λ = (nm), then the triple(
Syt(λ), ⟨∂⟩, fλ(q)

)
exhibits the cyclic sieving phenomenon.

This result inspired many more papers which furthered this idea. For example,
Rhoades later wrote a paper with TK Petersen and P Pylyavskyy [PPR09] which
also incorporated the concept of webs.

3.2. The q = −1 Phenomenon for 132 Pattern-Avoiding Permutations.

We continue our discussion on examples of the CSP’s ubiquity in combinatorics by
taking a look at a more specific case of the CSP. As discussed earlier, Stembridge’s
q = −1 phenomenon [Ste94] was the precursor to the generalized Cyclic Sieving
Phenomenon investigated by Reiner, Stanton, and White. We will take a look at
how this specialized version appears in counting pattern-avoiding permutations as
is presented by X. Chen [Che11].

Let us begin with some basic definitions. Firstly, a permutation of [n] is a
bijection from [n] to itself. We let Sn represent the set of all permutations of [n].
A permutation π ∈ Sn that satisfies the property π(π(i)) = i for all i ∈ [n] is called
an involution.

Furthermore, given another permutation σ such that σ ∈ Sk for some k ≤ n,
we say that a subsequence π(i1), π(i2), . . . , π(ik) of π is σ type if il < ir implies
π(il) < π(ir) if and only if σ(il) < σ(ir). We say that σ is a subpermutation
of π if there is some subsequence of π that is σ type. For example, 3412 is a
subpermutation 156324, since the subsequence 5634 is 3412 type. We say π avoids
σ if σ is not a subpermutation of π. Given a set R of permutations, we denote the
set of all permutations of length n that avoid every permutation in R by Sn(R),
and use S(R) =

⋃
n∈Z≥1

Sn(R).

Now, we have one last definition: let’s say we take a permutation π ∈ Sn for
some positive integer n, and divide it up into blocks of increasing runs; for example
we would split the permutation π = 13782546 into π = 1378|25|46. Now, for all
1 ≤ i ≤ n, let r(i) be defined as the number of blocks to the right of position i that
contain numbers both greater then π(i) and smaller than π(i). Then, define the
statistic rsg(π) by

rsg(π) =

n∑
i=1

r(i).
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Figure 2. An example of a Circular Dyck Path. Image from
[ALP19].

Returning to our example of π = 1378|25|46, we have

rsg(π) = 0 + 1 + 0 + 0 + 0 + 1 + 0 + 0 = 2.

Alternatively but equivalently, we could also define rsg(π) as the number of 2− 13
type permutations (the dash represents possible numbers in between the 2 and 1,
however the 1 and 3 must be within the same block). Thus, we have two 2 − 13
type permutations above, namely 3− 25 and 5− 46.

Now, we can define the polynomial that will later come in play in the theorem:

Fn(q) =
∑

π∈Sn(132)

qrsg(π).

For instance, it can be shown that F3(q) = 4 + q and F4(q) = 8 + 4q + 2q2. We
leave it as an exercise to the reader to show that this is in fact true.

The main result of [Che11] is the following:

Theorem 5. The number of involutions in Sn(132) is Fn(−1).

Consider as an example n = 3. Then, the involutions in S3(132) are 123, 213,
and 321. Also, notice that F3(−1) = 4 + (−1) = 3, so n = 3 does satisfy the
theorem.

For completeness, one could also show that Fn(1) = #Sn(132), which is the
other statement in Setmbridge’s theorem [Ste94]. However, this is fairly trivial,
since the sum of the coefficients of Fn(q) is simply the total number of 132-avoiding
permutations over all possible rsg statistic values, which would give us all 132-
avoiding permutations.

3.3. The CSP for Circular Dyck Paths.

Now, we return back to the general scope of the CSP and see how it applies
to Circular Dyck Paths (CDPs). The theorem was presented by Alexandersson,
Linusson, and Potka [ALP19] which we will be investigating here.

Firstly, a Circular Dyck Path can be thought of as a Dyck path that wraps
around and ends at the same point from which it started. An example of a Circular
Dyck Path is in Figure 2. Notice how the CDP is in a paralellogram shape, since
by definition of a Dyck path, the CDP cannot cross the diagonal border.

Every CDP (and every regular Dyck path for that matter) can be described by
an area sequence, which specifies the number of squares between the path and the
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right edge of the parallelogram. We can formally define an area sequence in the
following manner:

Definition 3.1. A Circular Dyck Path of height n and width m can be specified by
an area sequence (a1, a2, . . . , an) that satisfy

• ai ∈ Z≥0,
• 0 ≤ ai ≤ m− 1, and
• ai+1 ≤ ai + 1 (we consider an+1 = a1)

for all 1 ≤ i ≤ n. The set of all such sequences is denoted as CDP(n,m).

For example, the CDP in Figure 2 has an area sequence of (2, 3, 4, 4, 4, 3, 2, 2).
Another way to think about CDPs is from a starting point (x0, 0) such that 1 ≤
x0 ≤ m then moving in a sequence of eastward or upward steps specified by a binary
string of length n+m, where a 0 represents an eastward move and a 1 represents
an upward move.

The natural group action on the set CDP(n,m) is simply cyclically shifting the
area sequence by 1. We will denote such a shift as α. α will come in play later
when we are defining the cyclic group acting on CDP(n,m).

The last step is to find the q-polynomial which would work best for our CSP
triple. As it turns out, after much algebra and computation, Alexandersson-
Linusson-Potka found that the desired q-enumeration is

|CDP(n,m)|q =
∑
s∈Z

m∑
j=1

qs
2δ+s(j+1)

([
2n− 1

n− 1− δs

]
q

−
[

2n− 1

n+ j + δs

]
q

)
where the substitution δ = m+ 2 is being made. In particular, if m ≥ n, then

|CDP(n,m)|q = m

[
2n− 1

n− 1

]
q

−
m∑
j=1

qj
[
2n− 1

n+ j

]
q

−
m∑
j=1

[
2n− 1

n+ j − (m+ 2)

]
.

Remark 3.1. Some combinatorial identities can be proved using q-analogs. For
example, Alexandersson-Linusson-Potka proved the identity

#CDP(n,m) =
∑
t∈Z

[(
2n− 1

n+ (m+ 2)t

)
−
(
2n− 1

n+ t

)]
=
∑
t∈Z

(
2n− 1

n+ (m+ 2)t

)
− 22n−1

simply by letting q = 1 in the q-enumeration above and then adding some slight
modifications.

We have all of the ingredients we need for our CSP triple:

Theorem 6 (Alexandersson-Linusson-Potka). The triple

(CDP(n,m), ⟨α⟩, |CDP(n,m)|q)

exhibits the cyclic sieving phenomenon.

Further variants of the CSP are explored in [ALP19], such as subset cyclic sieving
and the introduction of Lyndon-like cyclic sieving.
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4. Final Remarks

The cyclic sieving phenomenon is a beautiful result that appears in many seem-
ingly unrelated aspects of combinatorics, all the way from standard Young tableaux
to pattern-avoiding permutations to Circular Dyck Paths. There are many more
examples of fields where the CSP appears, such as non-crossing trees, edges, and
graphs [Poz11]; words [RSW14]; and more. It is yet to see in what other intriguing
locations this phenomenon is discovered. In the mean time, we continue to ask our-
selves new questions and variants on the cyclic sieving phenomenon, continuously
exploring its natural ubiquity.
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