
DISCRETE LIMIT LAWS

AMIT SAHA

Abstract. Much of the analysis in generating functions is in regards
to exact counting or approximations of exact parameters. However, sig-
nificant interest lies in analyzing combinatorial parameters and their
distributions relative to combinatorial objects. In essence, we seek data
on probability distributions. Many parameters of interest follow certain
laws that determine their distribution: such laws are known as limit
laws. From bivariate and multivariate generating functions and their
parameters, we can derive a wondrous collection of distributions. This
paper is intended to briefly introduce the reader to some relevant meth-
ods and theorems.

1. Motivation

Example 1.1. We discuss an example of a discrete limit law before we for-
malize a definition – the class of binary words, I, binary words composed
of the letters {a, b}. First, we examine a parameter χ, counting the number
of initial a. Suppose that

Iχn,k := number of binary words with k initial a ∈ In.

It’s pretty easy to examine this using elementary methods (i.e. without
using generating functions). We find that

Iχn,0 = 2n−1, . . . , Iχn,n = 20 = 1.

The probability distribution is easy to find. If 0 ≤ k < n, then our distri-
bution is accordingly

PIn(χ = k) =
1

2k+1

and if k = n then we find that

PIn(χ = k) =
1

2n
.
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From here, we can take the asymptotic limit of such parameters and obtain
a cumulative distribution function for this class and parameter.

lim
n→∞

PIn(χ ≤ k) = 1− 1

2k+1
lim
n→∞

PIn(χ = k) =
1

2k+1

In this sense, there exists a discrete limit law for such a parameter. Note
the similarity of such a distribution to a geometric series. Thus, this is
known as a discrete limit law of the geometric type, as n → ∞. Other
parameters and combinatorial classes are best approached with continu-
ous limit laws, but such analyses require greater analytic machinery and
background. We now examine some particular machinery.

2. Preliminaries

All analysis of limit laws begins with a bivariate generating function,

F (z, u) =
∑
n,k=0

f(n, k)ukzn,

where the variable n marks the size of the structure and u marks some
combinatorial parameter of interest, relative to this structure in question.
Recall that the goal of limit laws is to elicit information about the probability
about some arbitrary parameter being true. Thus, it is natural to explore
probability generating functions.

Ideally, we would be able to extract coefficients from our original gen-
erating function – this is the simplest case, and allows us to easily obtain
a discrete limit law. However, such a task is difficult for more complex
schema and generating functions, and is not particularly general.

In light of this difficulty, we use some common probabilistic machinery
and use an alternative methodology.

Definition 2.1. The probability generating function of a class A over a pa-
rameter χ marked by u with bivariate generating function A(z, u) is defined
to be

∞∑
n=0

PAn(χ = n)uk =
[zn]A(z, u)

[zn]A(z, 1)

From here, asymptotic estimation of the coefficients of the generating
function yields the desired limit law, when taken in a neighborhood around
u = 1. Such asymptotic estimation may be developed in many ways.

Example 2.2. We again examine binary words, with the same parameter χ.
We first write down the specification for such a sequence. Suppose that the
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variable u marks the parameter χ. Then, it follows that

Iχ = Seq(ua)Seq(Seq(a)b) =⇒ Iχ(z, u) =
1

1− uz

1

1− z
1−z

=
1

1− uz

1− z

1− 2z
.

We fix u and extract coefficients.

[zn]W χ(z, u) ∼ 1/2

1− u/2
2n

Dividing by the coefficient of the vertical generating function (i.e. the uni-
variate generating function), we determine that

PIn(χ = k) =
1

2n
[zn]W χ(z, u) =

∞∑
i=0

1

2k+1
uk.

This is exactly the conclusion we derived earlier, except we have encoded
it into a generating function.

Distinctions exist between various forms of limit laws that may exist for
such parameters. In example [1.1], we derived two examples of discrete
limit laws.

lim
n→∞

PIn(χ ≤ k) = 1− 1

2k+1
lim
n→∞

PIn(χ = k) =
1

2k+1

When we are able to obtain estimates on parameters valued exactly as k,
we say that there exists a local limit law. Differences in this formulation are
insignificant in the case of the convergence of discrete variables, which can
be formalized by defining convergence of a limit law.

We now discuss several definitions and theorems, which we state without
proof as bases off of which we develop our analytic machinery.

Definition 2.3. A discrete random variable Xn is said to converge to Y , if
for all k ≥ 0, the property that

lim
n→∞

P(Xn ≤ k) = P(Y ≤ k)

holds. This occurs at speed ϵn if the following holds.

sup
k

|P(Xn ≤ k)− P(Y ≤ k)| ≤ ϵn lim
n→∞

ϵn = 0

Remark 2.4. Replacing the definitions here with equivalence rather than
inequalities would lead to an exactly equivalent formulation of the defini-
tion, since the variables here are discrete. Thus, local limit laws are in some
sense equivalent to traditional discrete limit laws. However, in our analytic
formulation using bivariate generating functions, it may be easier to deal
with closed forms of functions. Thus, we use the following theorem.
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Theorem 2.5. Continuity Theorem. If ω is a set in the unit disk with
at least one accumulation point, and if the probability generating functions
pn(u) =

∑
k≥0 pn,ku

k and q(u) =
∑

k≥0 qku
k have weak convergence,

(2.1) lim
n→+∞

pn(u) = q(u),

for all u ∈ ω, a discrete limit law holds such that

(2.2) lim
n→+∞

pn,k = qk

This theorem allows us to directly utilize the analytic properties of our
bivariate generating functions. We omit the proof for brevity. A simple
corollary follows.

Corollary 2.6. If pn(u) and q(u) satisfy [2.3], it similarly follows from
summation of equation (2.2) that

lim
n→+∞

∑
i≤k

pn,i =
∑
i≤k

qi.

This theorem and its corollary give us access to a wide range of parame-
ters that may be analyzed with such methods.

3. Applications to Permutation Statistics

Recall that the univariate specification for a permutation is

P ∼= Set(Cyc(Z)).

Thus, a permutation is essentially a set of multiple cycles. The formulation
of such a law with the set construction makes it more likely that the Poisson
distribution will appear in parameters of permutations. Specifically, the
Poisson distribution has probabilities

e−λλ
k

k!
and probability generating function eλ(1−u).

Example 3.1. We first examine singletons in permutations. The bivariate
generating function marking this parameter, which we’ll again call χmarked
by u, is

Pχ ∼= Set(uZ +Cyc≥2(Z)) =⇒ P χ(z, u) =
exp(z(u− 1))

1− z
.
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The simplest approach here is to directly extract both coefficients. We find
that

[znuk]P χ(z, u) =
dn−k

k!
,

and utilizing the asymptotic dn = 1/e, we find that

lim
n→+∞

pn,k =
1

e
· 1

k!
.

As discussed earlier, this is simply a discrete law of the Poisson type.

We naturally extend this framework for the number of cycles of length
m in an arbitrary permutation.

Example 3.2. The bivariate generating function marking cycles of length m
with u is

Pχ ∼= Set(Cyc ̸=m(Z)+uCyc=m(Z)) =⇒ P χ(z, u) =
exp((u− 1)zm/m)

1− z
.

Utilizing the framework we developed earlier, we can extract asymptotics
for the coefficients. We find that

lim
n→∞

[zn]P (z, u) = e(u−1)m,

which is clearly a probability generating function for a Poisson distribution.
Thus, the distribution of cycles of size m in permutations follows a Poisson
law.

4. Applications to Trees

We briefly discuss some complex-analytic machinery. It is well known
that analysis of singularities can give significant insights on the growth rate
of coefficients. Suppose that we have two classes, A and B. We call their
composition schema, C,

C ∼= A ◦ (uB) =⇒ C(z, u) = A(uB(z)).

This schema essentially enumerates the number of B components with some
sort of greater structure, provided by A. If the generating functions A
and B have radii of convergence ρa and ρb respectively, then we define the
quantities

(4.1) τa = lim
z→ρa

A(z) and τb = lim
z→ρb

B(z).

We treat the case in which τb < ρa. In this case, we consider the composition
schema to be subcritical. The subcritical schema forces the composition
of generating functions to have a singularity of the same type of the in-
ternal function, in this case B(z), since the value the generating function
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approaches near its singularity is defined for A(z). In some sense, it is sim-
pler to treat and analyze this singularity. The subcritical case yields a very
helpful method for treating asymptotics and obtaining limit laws.

Theorem 4.1. (Subcritical Composition Limit Laws). Suppose that C(z, u) =
A(uB(z)). If this composition is subcritical and B(z) has a singularity at
ρ = ρb, defined in the same way as earlier, on its disc of convergence.
Then, a discrete limit law holds for the enumeration of B components. De-
fine cn,k = [znuk]C(z, u), cn = [zn]C(z, 1), and an = [zn]A(z). The discrete
law is of the form

(4.2) lim
n→∞

cn,k
cn

=
kakτ

k−1

A′(τ)
.

This implies that the probability generating function is equal to

(4.3)
uA′(uτ)

A′(τ)
.

We omit the proof for brevity. This theorem allows us to treat subcritical
schema and their respective limit laws in a much more methodical and
direct manner. We are now fully equipped to examine some limit laws
in the combinatorics of trees. Suppose we seek to count the number of
components of an ordered forest of Catalan trees. Suppose that the forest is
represented by class F , and the Catalan trees by class C. It follows directly
that

F ∼= Seq(uC) =⇒ F (z, u) =
1

1− uC(z)
=

1

1− u
2

(
1−

√
(1− 4z)

) .
In this case, τ = 1/2, which implies that τ < ρF . Applying [4.2], we find
that

lim
n→∞

P(Xn = k) =
k

2k+1
.

This is a discrete limit law for this parameter and schema.
If we instead treat Cayley trees, the analysis is similar. We have the

bivariate generating function

F (z, u) = euT (z), T (z) = zeT (z).

Again, the conditions of theorem [4.1] are satisfied. It follows that the limit
law is

lim
n→∞

P(Xn = k) =
1

e(k − 1)!
.

This is simply a Poisson distribution shifted by 1.
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5. Conclusion

Discrete limit laws, as described in this paper, offer a clear and method-
ical manner in which we can derive information about the distribution of
parameters in combinatorial classes. There are many other applications and
specializations of limit laws, such as continuous limit laws and extensions
to the critical and supercritical cases of composition schema, that were not
covered in this paper.
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