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1. Introduction

If you ever try to find a general term for a particular generating function, say, for the
number of bracketings of a sequence of identical letters (see Week 3 Problem 3),

sn =
1

n

n−1∑
k=1

2k−1

(
n

k

)(
n− 2

k − 1

)
,

you will not always get an explicit formula for the nth coefficient. Now your natural
instinct might be to plug such a result into WolframAlpha to see if they have a nicer answer,
and in this case we get

sn = 2F1(1− n, 2− n; 2; 2).

In this paper, we will be exploring what the above result means and how to make sense
of it. To start, we present some basic definitions.

Definition 1.1. A hypergeometric series is any power series whose ratios between consecu-
tive coefficients αn+1

αn
satisfy a rational function in terms of n. All hypergeometric series are

hence of the form

∞∑
n=0

(
n∏

j=1

∏p
k=1(j + ak − 1)∏q
k=1(j + bk − 1)

)
zn

n!
.

For sake of clarity, we can shorten the above expression into

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z).

Definition 1.2. The hypergeometric function is one of the most common forms of such
hypergeometric series:

2F1(a, b; c; z) =
∞∑
n=0

(
n∏

j=1

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn

n!
.

Notice that a, b, and c need not be integers, or even constants, as seen in our example with
the bracketings. We will be working closely with the hypergeometric function to discover
many of its properties and also learn how to write many of the most basic functions we work
with in terms of such a general formula.

Interestingly enough, this hypergeometric function is the solution to the differential equa-
tion z(z − 1)f ′′ + ((a+ b+ 1)z − c)f ′ + abf = 0.
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2. Special Properties

We begin our exploration of these functions by looking at some basic properties.

Theorem 2.1. In 2F1(a, b; c; z), if either a or b is a nonpositive integer, the function con-
verges.

Proof. Without loss of generality assume that a is a nonpositive integer. Then starting from
the index n = 1 − a, the numerator will be equal to 0 since (n + a − 1) = 0. As a result,
none of the terms that follow n = 1− a will contribute anything to the sum either, and we
end up with a finite series of terms:

2F1(a, b; c; z) =
1−a∑
n=0

(
n∏

j=1

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn

n!
.

□

It is also worthwhile to compute the derivative of the hypergeometric function, as it gives
us a surprisingly simple result:

d

dz
2F1(a, b; c; z) =

d

dz

∞∑
n=0

(
n∏

j=1

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn

n!

=
∞∑
n=0

(
n∏

j=1

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn−1

(n− 1)!

=
∞∑
n=0

(
n+1∏
j=1

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn

n!

=
∞∑
n=0

(
ab

c

n+1∏
j=2

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn

n!

=
∞∑
n=0

(
ab

c

n∏
j=1

(j + (a+ 1)− 1)(j + (b+ 1)− 1)

(j + (c+ 1)− 1)

)
zn

n!

=
ab

c
2F1 (a+ 1, b+ 1; c+ 1; z) .

3. Elementary Functions using 2F1

We start off with the following identity:

Theorem 3.1.

log(1 + z) = z2F1(1, 1; 2,−z).

Proof. Computing the right hand side gives us



HYPERGEOMETRIC FUNCTIONS 3

z2F1(1, 1; 2,−z) =
∞∑
n=0

(
n∏

j=1

(j + 1− 1)(j + 1− 1)

(j + 2− 1)

)
(−z)n

n!

=
∞∑
n=0

(
n∏

j=1

j2

(j + 1)

)
(−z)n

n!

=
∞∑
n=0

(n!)2

(n+ 1)!
· (−z)n

n!

=
∞∑
n=0

(−z)n

n

= log(1 + z),

as desired. □

Theorem 3.2.

(1− z)a = 2F1(−a, x;x; z).

Proof. Once again, we just compute the right hand side.

z2F1(−a, x;x, z) =
∞∑
n=0

(
n∏

j=1

(j − a− 1)(j + x− 1)

(j + x− 1)

)
zn

n!

=
∞∑
n=0

(
n∏

j=1

(j − a− 1)

)
zn

n!

=
∞∑
n=0

(n− a− 1)(n− a− 2) · · · (−a)

(n)(n− 1) · · · (1)
zn

=
∞∑
n=0

(−1)n(a)(a− 1) · · · (a− n+ 1)

(n)(n− 1) · · · (1)
zn

=
∞∑
n=0

(
a

n

)
(−z)n

= (1− z)a,

as desired. □

Theorem 3.3.

arctan(z) = z2F1(1/2, 1; 3/2;−z2).
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Proof. For the last time, we proceed as follows:

z2F1(1/2, 1; 3/2;−z2) = z

∞∑
n=0

(
n∏

j=1

(
j + 1

2
− 1
)
(j + 1− 1)(

j + 3
2
− 1
) )

(−z2)n

n!

= z

∞∑
n=0

(
n!

2n+ 1

)
(−z2)n

n!

=
∞∑
n=0

(−1)n(z)2n+1

2n+ 1

= arctan(z),

where we know that

n∏
j=1

(
j + 1

2
− 1
)
(j + 1− 1)(

j + 3
2
− 1
) =

(1/2 · 3/2 · 5/2 · · · (2n− 1)/2)n!

(3/2 · 5/2 · · · (2n− 1)/2) · (2n+ 1)/2
=

n!

2n+ 1
.

□

4. Chu-Vandermonde Identity

We now endeavor to prove some identities regarding the hypergeometric function in order
to ultimately derive the Chu-Vandermonde Identity. Starting with arbitrary z, we have

(1− zt)−a =
∞∑
n=0

(−1)n(a)(a+ 1) · · · (a+ n− 1)

n!
(−z)ntn =

∞∑
n=0

(
n∏

j=1

(j + a− 1)

j

)
zntn.

This allows us to write the following:

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt =
∞∑
n=0

(
n∏

j=1

(j + a− 1)

j

)
zntn

∫ 1

0

tn+b−1(1− t)c−b−1dt

=
∞∑
n=0

(
n∏

j=1

(j + a− 1)

j

)
zntnB(n+ b, c− b),

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt is the Beta function. There exists an identity that

B(x, y) = Γ(x)Γ(y)
Γ(x+y)

, where Γ is the regular Gamma function. Thus, we can rewrite the above

integral as

Γ(n+ b)Γ(c− b)

Γ(n+ c)
.

Thus, we obtain
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Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt =
Γ(c)

Γ(b)Γ(c− b)
(1− zt)−a

∫ 1

0

tb−1(1− t)c−b−1dt

=
Γ(c)

Γ(b)Γ(c− b)

∞∑
n=0

(
n∏

j=1

(j + a− 1)

j

)
zn

Γ(n+ b)Γ(c− b)

Γ(n+ c)

=
∞∑
n=0

(
n∏

j=1

(j + a− 1)

j

)
zn

Γ(c)Γ(n+ b)

Γ(b)Γ(n+ c)

=
∞∑
n=0

(
n∏

j=1

(j + a− 1)(j + b− 1)

j(j + c− 1)

)
zn

=
∞∑
n=0

(
n∏

j=1

(j + a− 1)(j + b− 1)

(j + c− 1)

)
zn

n!

= 2F1(a, b; c; z).

Importantly, this identity gives us a cleaner expression for a special case as well:

2F1(a, b; c; 1) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− t)−adt

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−a−1dt

=
Γ(c)

Γ(b)Γ(c− b)
B(b, c− a− b)

=
Γ(c)

Γ(b)Γ(c− b)
· Γ(b)Γ(c− a− b)

Γ(c− a)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Letting a = −m we get

2F1(−m, b; c; 1) =
Γ(c)Γ(c+m− b)

Γ(c+m)Γ(c− b)

=
Γ(c)

Γ(c+m)
· Γ(c+m− b)

Γ(c− b)

=
1

(c)(c+ 1) · · · (c+m− 1)
· (c− b)(c− b+ 1) · · · (c− b+m− 1)

1

=
(c− b)(c− b+ 1) · · · (c− b+m− 1)

(c)(c+ 1) · · · (c+m− 1)
,
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allow us to eliminate all the Γ’s and integrals. Our final step is now to prove the following
identity and then use it to our advantage.

Theorem 4.1. (
n

k

)
= (−1)k

(
k − n− 1

k

)
.

Proof. We simply compute the right side, as we have always done:

(−1)k
(
k − n− 1

k

)
= (−1)k

(k − n− 1)(k − n− 2) · · · (−n)

k!

= (−1)k(−1)k
(n− k + 1)(n− k + 2) · · · (n)

k!

=

(
n

k

)
,

as expected. □

We can now expand the hypergeometric function to get

(c− b)(c− b+ 1) · · · (c− b+m− 1)

(c)(c+ 1) · · · (c+m− 1)
= 2F1(−m, b; c; 1) =

∞∑
n=0

(
n∏

j=1

(j −m− 1)(j + b− 1)

(j + c− 1)

)
1

n!

(c− b)(c− b+ 1) · · · (c− b+m− 1)

(c)(c+ 1) · · · (c+m− 1)
=

∞∑
n=0

(
n∏

j=1

(j −m− 1)(j + b− 1)

(j + c− 1)j

)
.

Now we can use the identity (
n

k

)
= (−1)k

(
k − n− 1

k

)
multiple times to reach the general form of the well-known Vandermonde Identity in

combinatorics.

Theorem 4.2 (Chu-Vandermonde Identity). For complex s, t and nonnegative integers n,
we have (

s+ t

n

)
=

n∑
k=0

(
s

k

)(
t

n− k

)
.

5. Conclusion

We can use hypergeometric series, in particular, 2F1, to express a variety of generating
functions that otherwise cannot be stated very neatly. We can also see that the hypergeo-
metric function can easily be applied to much simpler series, such as binomial coefficients
orthe arctangent function. Finally we saw how a result of Gauss could be used, with the
help of the hypergeometric function, to obtain one of the common identities in competi-
tion math—Vandermonde. Hypergeometric series have many other applications, such as in
mechanics (for example, harmonic oscillation) and atoms.
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